Some thoughts on Uncertainties and Error Propagation in Collisional-Radiative Models

Yuri Ralchenko

National Institute of Standards and Technology
Gaithersburg, MD, USA

CCN Meeting, IAEA, Vienna
May 6, 2013
Question to ask

What is the effect of uncertainties in atomic data on the uncertainties of the derived plasma kinetic parameters?

- Line intensities and level populations
- Ionization distribution characteristics
- Radiative power losses
- ...
Plan

• Collisional-radiative modeling in 30 seconds
• History
• Monte Carlo simulations for Steady-State CR
• Non-LTE Code Comparison Workshops
• Conclusions
Collisional-Radiative Models

• Solve rate equations to determine atomic state populations and all relevant parameters
 ▫ Ionization balance
 • Mean ion charge \bar{Z}
 • Central moments
 ▫ Spectral emission
 ▫ Power losses
• CRMs can be very different!

\[
\frac{d\hat{N}(t)}{dt} = \hat{A}(t) \cdot \hat{N}(t)
\]
Benchmarks for plasmas?..

A. Plasma must have
- No gradients
- No temporal behavior
- No space effects (opacity)
- Thermal EEDF (mono!)

B. Independent measurements
- Particle temperature
- Particle density
- Spectral characteristics and/or plasma population kinetics parameters

It is extraordinarily difficult to satisfy both A and B in laboratory plasmas
What data?..

- **Energy levels** (different nature, e.g., m-sublevels, levels, terms, configurations, superconfigurations)
- **Radiative rates** (Einstein coefficients or oscillator strengths)
- **Autoionization rates**
- Collisional cross sections or rate coefficients
 - Electron-impact (de)excitation and ionization
 - Photoexcitation, photoionization, photorecombination
 - Three-body recombination
 - Dielectronic capture or dielectronic recombination
 - Heavy-particle collisions
 - ...

Density limits

• **High density**
 ▫ Different for different ion charges
 ▫ LTE/Saha equilibrium
 • Collisions are much stronger than non-collisional processes
 • \(N_i = N_0 \frac{g_i}{g_0} e^{-\Delta E_{i0}/T_e} \)
 • Populations only depend on energies, degeneracies, and (electron) temperature
 • BUT: need radiative rates for spectral emission

• **Low density (corona)**
 ▫ All data are (generally) important
 ▫ Line intensities (mostly) do NOT depend on radiative rates, only on collisional rates
History + recent work

- D. Salzmann (SNRC)
 - PRA, 1980
 - \(\frac{N_{i+1}}{N_i} = f_i \)
 - \(\frac{\Delta N_Z}{N_Z} = \alpha (Z - \bar{Z}) \)
 - Most abundant changes the least

- Modern efforts
 - Auburn + NASA + Harvard + Strathclyde
 - Within one ion
 - G and R ratios in He-like ions
 - Baseline uncertainties
 - Difference between different theoretical approaches
 - Method sensitivity
 - Same method but different model sizes

“It is our opinion that a systematic approach to error is overdue in this area”
Summers et al, 2002
History (cont’d)

- Workshop “Uncertainties in atomic data and how they propagate in chemical abundances”, Tenerife, Spain, 2010
 - ~25 participants
 - MC approach
 - Analytical approach does not give a good estimate of the true statistical uncertainties
 - Importance of analysis of systematic uncertainties
Definitions

- **Ion populations**
 - $i = 0..Z_N$, N_i is the total population of the ion i
 - $\sum_{i=0}^{Z_N} N_i = 1$

- **Mean ion charge and central moments**

\[
\bar{Z} = \sum_{i=0}^{Z_N} i \cdot N_i
\]

variance

\[
\sigma_2 = \sum_{i=0}^{Z_N} (i - \bar{Z})^2 \cdot N_i
\]

Third moment

\[
\sigma_3 = \sum_{i=0}^{Z_N} (i - \bar{Z})^3 \cdot N_i
\]
Monte Carlo vs Analytical (WSS)

- **Monte Carlo**
 - Inherently simple
 - Any distribution of uncertainties can be propagated at any stage
 - Does not require relative uncertainties to be small

- **Analytical**
 - Can become extremely complex
 - Implicitly assumes normal distribution for all input/output uncertainties
 - The Taylor expansion requires that the uncertainties be small relative to the quantities

\[
H = h(f, g, \ldots)
\]

\[
\sigma^2_H = \left(\frac{\partial h}{\partial f} \sigma_f \right)^2 + \left(\frac{\partial h}{\partial g} \sigma_g \right)^2 + \ldots
\]
Monte Carlo analysis

- Generate a (pseudo-)random number between 0 and 1
- Using Marsaglia polar method, generate a normal distribution
- Randomly multiply every rate by the generated number(s)
- To preserve physics, **direct and reverse** rates (e.g. electron-impact ionization and three-body recombination) are multiplied by the same number
- Ionization distribution is calculated for steady-state approximation
We think in logarithms...

- Sample probability distribution
 - Normal distribution with the standard deviation σ
 \[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/2\sigma^2} \]
 - Normal distribution is applied to log(Rate)
 - log-normal distribution
Ne: fixed I&R rates

$N_e = 10^8 \text{ cm}^{-3}$

$T_e = 1-100 \text{ eV}$

Ionization stages:
Ne I-IX

ONLY
ground states

MC: 10^6 runs

NOMAD code
(Ralchenko & Maron, 2001)
Ne: + stdev=0.05
Ne: + stdev=0.30
Ne: + stddev=2
Ne: + stdev=10

Structures appear!

Yu. Ralchenko, to be published
Lines: two ions populated

\[\bar{Z} = Z + n \cdot (1 - \alpha) \]
\[\sigma^2 = (\bar{Z} - Z) \cdot (Z + n - \bar{Z}) \]

\[n = 1, 2, >2 \]
Standard deviation: 10

\[\sigma_3 = f(\bar{Z}, \sigma_2) \]

Standard deviation: 2
Deviation for Z

Yu. Ralchenko, to be published

Fixed $T_e = 20$ eV
C: 10^6 cm$^{-3}$, ground states only
C: g.s. and full model
C: full model
C: 10^6 and 10^{17}
C: 10^6, 10^{17} and 10^{19}
C: 10^6, 10^{17}, 10^{19}, and 10^{21}

Yu. Ralchenko, to be published
C: 10^6, g.s.
Non-LTE Code Comparison Workshops

- Goal: to benchmark CR models against ideal cases
- Models may differ in various parameters, e.g., atomic structure, number of states, nature of states, quality of atomic data, etc.
- 15-20 codes, 20-25 participants
- Last: NLTE-7, Vienna, 2011
- Next: NLTE-8, Santa Fe, 2013
NLTE-7: Kr comparisons

S. Hansen et al, to be published in HEDP
Conclusions

• We are witnessing the beginning of the systematic analysis of uncertainty propagation in CR models
• Both analytical and MC methods are being applied
• First efforts produced a number of interesting results
• More to follow soon...