Electronic and Atomic Collisions with Hydrogen and Helium Ions

State-Specific Study of Associative, Dissociative and Reactive Processes

Julien Lecointre, X. Urbain, J. J. Jureta, P. Defrance

Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Belgium

1st Research Coordination Meeting

“Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma”

IAEA – August 2011
Outline

Three experimental setups ready to use:
- Merged-beams experiment
- Dissociative charge transfer experiment
- Crossed-beams experiment

Scientific scope of the project
- Ion-Ion collisions
- Ion-Atom collisions
- Electron-Molecular-Ion

Work in progress and to be done

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
• **Crossed-beams**

 – Experimental setup

 – Absolute cross sections for electron impact dissociation and/or ionization

The people involved ...

Université catholique de Louvain, Belgium

 J. Lecointre, J.J. Jureta, **P. Defrance**

Stevens Institute of Technology, USA

 K. Becker

Universität Greifswald, Germany

 H. Deutsch

Belgrade University, Serbia

 D.S. Belic

Institut für Plasmaphysik Julich, Germany

 R.K. Janev, D. Reiter

Leopold Franzens Universität Innsbruck, Austria

 T.D. Märk

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Crossed-beams experiment

Example: $\text{HeH}^+ + e^- \rightarrow \text{He}^+ + ...$

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
Crossed-beams experiment

Similar to the CRP on “Light Element Atom, Molecule and Radical Behaviour in Divertor and Edge Plasma Regions”
Period 2009 – 2014

For example:
Reaction HeH\(^+\) + e\(^-\)
Crossed-beams experiment to measure the absolute cross sections for dissociative excitation and dissociative ionization
Measurement of the energy thresholds and of kinetic energy release distributions for the considered reactions
Deduction of the electronic states contributing in the considered processes
Vibrational population depending on the source conditions and the type of sources

http://www-amdis.iaea.org/CRP/LightElement/

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
• **Merged-beams**

 – Experimental setup

 – Total cross sections for the associative ionisation and mutual neutralisation

The people involved ...

Université catholique de Louvain, Belgium

J. Lecointre, **X. Urbain**

Columbia University, USA

D.W. Savin, K. A. Miller

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
Merged-beams experiment

Electrostatic Merging

Zoom on the ion sources

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Study of the Mutual Neutralization reaction

\[\text{H}^- + \text{H}^+ \rightarrow \text{H} + \text{H} \]

(work in progress…)

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Mutual Neutralization (MN)

\[\text{H}^- + \text{H}^+ \rightarrow \text{H} + \text{H} \]

Uncertainty of MN cross section

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Detection efficiency depends on:

- single particle detection efficiency: > 98% for CEM, 57% for MCP
- angular spread of both beams (profiles measured in detection plane)
- deflection accompanying MN: differential cross section

also visible in TOF spectra

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
TOF spectra and angular scattering

forward/backward

isotropic

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
TOF spectra and angular scattering

H\(^{+}\) + H\(^{-}\) : Coulomb scattering

Better approximation:
- scattering up to avoided crossing with MN channel H+H(n=3)
- integration over impact parameter

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
$E_r \approx 0$

$$\text{KER} = \text{IP}[\text{H}(n=3)] - \text{EA}[^1\text{H}] = 0.758 \text{ eV}$$
Absolute cross section for MN of H^+ and H^-

Two independent determinations

OPTION 1: measure all relevant quantities
- beam currents
- form factor (beam overlap)

OPTION 2: measure ratio of MN and Al signals

Al: 15% systematic uncertainty

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Absolute cross section for MN of H^+ and H^-

Ratio = 48 ± 2

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
Partial cross section for MN to H + H(n=2, 3)

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Other MN studies: H_2^+, He^+ + H^-

• **Dissociative charge transfer**

 – Experimental setup

 – Total cross sections, vibrational population of molecular ions

The people involved ...

Université catholique de Louvain, Belgium

J. Lecointre, **X. Urbain**

Université Libre de Bruxelles, Belgium

N. Vaeck, J. Loreau (*now at CfA, Harvard*)

Université de Bordeaux 1 (CELIA), France

B. Pons

Universidad Autónoma de Madrid, Spain

C. Illescas

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Study of the HeH$^+$ target (work in progress…)
XUV photodissociation of HeH⁺

Experiments performed at the Free Electron Laser (FEL) FLASH in Hamburg (Germany)

\[\text{HeH}^+(X^1\Sigma^+) + h\nu \rightarrow (\text{HeH}^+)^* \]
\[\rightarrow \text{He}(1s nl \, ^1L) + \text{H}^+ \]
\[\rightarrow \text{He}^+(1s) + \text{H}(nl) \]

Experiment

Theory

X. Urbain, *1st CRP Meeting, Vienna, 11 August 2011*
(a) He^+ + H(nl) and (b) He(1snl) + H^+, for PD of vibrationally hot (red line) and vibrationally cold (blue line) ions.

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Present work: Ro-vibrational analysis of the XUV photodissociation of HeH$^+$ ions

Dissociative charge transfer:

$$\text{HeH}^+ + K \rightarrow (\text{HeH})^* + K^+ \rightarrow \text{He} + \text{H} + K^+$$

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Ro-vibrational excitation

Vibrational population extracted from measurements performed with a duoplasmatron source operating under conditions similar to FLASH experiment

- **Direct Beam**
 - $v=0$: 55%
 - $v=1$: 23%
 - $v=2$: 11%
 - $v=3$: 7%
 - $v=4$: 4%
 - $T_{rot} = 3400 \, K$

- **10 ms Trapping**
 - $v=0$: 99%
 - $v=1$: 1%
 - $T_{rot} = 3100 \, K$

$T_{rot} = 3100 \, K$ obtained by optical spectroscopy!

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
Total cross section

Total cross section for the photodissociation into $\text{He}(1s n l \ ^1L) + \text{H}^+$ starting from the initial state $v = 0, J = 0$

The cross section for the photodissociation into $\text{He} + \text{H}^+$ weighted by the experimental vibrational distribution

BUT: branching towards $n>3$ states (H^* and He^* alike) not explained

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
State-to-state problem to be addressed

\[H^+ + H_2 \text{ (HD, D}_2\text{)} \rightarrow H + H_2^+ (v) \]
H^+ + H_2 (HD, D_2, ...) collisions at low impact energies

Total cross sections for vibrational excitation and electron capture processes.

Theory:
L.F. Errea et al, JCP 133, 244307 (2010)

Experiments:

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
H^+ + H_2 (HD, D_2, ...) collisions at low impact energies

Measurement of the vibrational distributions of H_2^+ by DCT

Partial cross sections for population of individual vibrational states of H_2^+ and H_2.

X. Urbain, 1sr CRP Meeting, Vienna, 11 August 2011
Merged Beams Setup for H+H⁻ AD studies

- Interaction region
 - H₂ molecule formation
 - H⁻ + ν_{IR} → H₂
 - H⁻ + H → H₂ + e⁻

- Photodetachment region
 - Partial neutralization of the H⁻ beam inside a drift tube at variable voltages -U_f
 - H⁻ + ν_{IR} → H + e⁻

- Detection region
 - H₂ stripping in helium
 - H₂⁺ detection by energy analyzers
 - H₂ + He → H₂⁺ + [He, e⁻]

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
$H^- \rightarrow H$ photodetachment scheme

Neutralized fraction of the H^- beam

$$f_{PD} = C \frac{P_{\text{laser}}}{v_{HH} \sin(\alpha)}$$

To reach a photodetachment efficiency of $\sim 10\%$ at 10keV, we need a laser with ~ 2 kW of cw power @ 1000 nm

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
Laser system: interleaved stacks @ 975 nm

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Measured AD rate coefficient 3.7 meV – 1eV

X. Urbain, 1rst CRP Meeting, Vienna, 11 August 2011
- Three experimental setups ready to use:
 - Merged-beams experiment
 - Dissociative charge transfer experiment
 - Crossed-beams experiment

- Study of Ion-Ion, Ion-Molecule and Electron-Molecular-Ion collisions

- Fundamental data for collisional processes involving H, H⁺, H⁻, He, He⁺, He²⁺, He⁻, H₂, H₂⁺, H₃⁺, HeH⁺, He₂⁺ (and isotopes).

- Cross-sections for collisions with electrons and collisions among themselves, photon-induced processes, lifetimes of excited states…

- Comparison and critical evaluation of existing data.

X. Urbain, 1st CRP Meeting, Vienna, 11 August 2011
Thank you for your attention

Université catholique de Louvain – UCL
Institute of Condensed Matter and Nanosciences – IMCN
Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

Fonds de la Recherche Scientifique – FNRS
Belgium
xavier.urbain@uclouvain.be
jliven.lecointre@uclouvain.be