A Tale of Two Atoms or Studies of HeH: DR, VE, DE, RIP, PI, MN, …

Ann E. Orel
Asa Larson

This material was based on work supported by the National Science Foundation, while working at the Foundation. Any opinion, finding and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.
Studies of HeH/HeH$^+$

- Calculated accurate potential energy curves
 - Ion states
 - Neutral states
 - Autoionizing states
- Calculated autoionization widths
 - Complex Kohn variational method
- Calculated non-adiabatic coupling elements between all neutral states including the autoionizing states
 - Analytic non-adiabatic couplings from MESA
Level of Calculation

• Structure
 – Basis set
 • He aug-cc-pVQZ
 • H aug-cc-pVTZ
 • Extra diffuse functions to describe 3d states
 • 106 functions total
 • Full CI
 – Results
 • Reproduced asymptotic energies to roughly 200cm$^{-1}$
 • Reproduced crossing points of ion-pair curve to tenths of atomic units
Level of Calculation

• Non-adiabatic coupling elements
 – Same basis
 – Lowest 10 orbitals from MCSCF
 – Full CI in 10 orbitals, doubles outside

• Results
 – Reproduced full CI energies
Level of Calculation

• Scattering
 – Same basis
 – 10 Natural orbitals
 – Full CI in 10 orbitals, singles outside

• Results
 – Shifted energies, but relative to ion same energies as full CI
Problems being studied

- Direct Dissociative Excitation
- Resonant Excitation
 - Vibrational
 - Dissociative
 - Ion-pair formation
- Dissociative Recombination
 - Direct
 - Indirect
- Mutual Neutralization
- Penning Ionization
Resonant Processes

Vibrational excitation

Dissociative excitation and recombination
Local complex potential
or “Boomerang” model

\[(E - K_R - V_{res}) \xi_v = \left(\frac{\Gamma(R)}{2\pi} \right)^{1/2} \eta_v(R)\]

Nonlocal potential model

\[V_{res}(R) = E_{res}(R) - i \frac{\Gamma(R)}{2}\]

\[V_{res}(R, R') = E_{res}(R)\delta(R - R') - i\pi \sum_{\nu}^{open} U_{\nu}(k_{\nu}, R)U_{\nu}(k_{\nu}, R')\]

\[U_{\nu}(k_{\nu}, R) = \left(\frac{\Gamma(R)}{2\pi} \right)^{1/2} \eta_{\nu}(R)\]

Some working equations…

\[\frac{k^2(R)}{2} = E_{res} - E_{tar}\]
More working equations...

\[H_{\text{Res}} = K_R + V_{\text{res}} \]

Scattering amplitude

\[T_{f,i}(E) = \left\langle \Phi_{\text{final}} \left| \frac{1}{E - H_{\text{res}}} \right| \Phi_{\text{initial}} \right\rangle \]

\[\Phi_{\text{initial}} = \left(\frac{\Gamma(R)}{2\pi} \right)^{1/2} \eta_v(R) \]

Cross section

\[\sigma_{f,i}(E) = \frac{4\pi^3}{k^2} \left| T_{f,i}(E) \right|^2 \]

\[\frac{k^2(R)}{2} = E_{\text{res}} - E_{\text{tar}} \]
Local Complex Potential or “Boomerang” model for Resonant Vibrational Excitation in 1D (diatomics)

\[\Phi_{\text{initial}}(R) = \left(\frac{\Gamma(R)}{2\pi} \right)^{1/2} \chi(R) \]

Time-dependent formulation

\[T_{f,i}(E) = -i \int_{0}^{\infty} e^{iE_t t} \langle \Phi_{\text{final}} | \psi_t \rangle dt \]

with

\[\psi_t = e^{-iH_{\text{anion}} t} |\Phi_{\text{initial}}\rangle \]

Example: \(\text{N}_2 \)
HeH$^+$ Dissociative Excitation
Josefine Soder

HeH$^+$ and HeH Resonant States

Energy (eV) vs. Bond Distance (bohr)

- $^1\Sigma$
- $^3\Sigma$
- Resonance

He$^+$ + H → He* + H
He + H$^+$
HeH$^+$ Dissociative Excitation (OLD)

Resonant Curves

Electronic resonant states of HeH of $^2\Sigma^+$ symmetry
Autoionization Widths

Autoionization width of resonant states of HeH of \(^2\Sigma^+ \) symmetry

Internuclear distance (\(a_0 \))

Autoionization width (au)
Resonant Dissociative Excitation ($v=0$)
Resonant Dissociative Excitation
Effect of vibration

![Graph showing cross section vs. energy for different vibrational levels (v=0, v=1, v=2).]
HeH$^+$
Direct Dissociative Excitation

Energy (eV) vs. Bond Distance (bohr)

$^1\Sigma$
$^3\Sigma$

He$^+$ + H
He + H$^+$
Direct Processes

- Quantum chemistry calculations to determine potential energy curves
- Electron scattering calculations to determine T-matrix

\[
\sigma_{v \rightarrow k_v}(E) = \frac{k_v}{k_0} \int \int \chi_v(R) f(E_0; R, \Omega) \chi_{k_v}(R) dR \left| \sum_{l'l'm} \frac{1}{k_0^2} \int \chi_v(R) T_{l'l'm}^{TT'}(R) \right|^2 \frac{d\Omega}{4\pi}
\]

\[
\sigma(E_0) = \sum_{l'l'm} \int \sigma(E_0; R) \chi_v(R)^2 dR
\]

δ-function approximation
Fixed Nuclei Cross Section

R=1.45 Bohr

Energy (eV)

Cross Section (Atomic Units)
HeH$^+$ Direct Dissociative Excitation

Effect of Resonances

Cross Section (cm2)

Energy (eV)

$^3\Sigma$

$^3\Sigma$

Total
Resonances??

- First set of resonances ~25eV
 - Lie between first \((^3\Sigma)\) and second \((^1\Sigma)\) state of the ion
 - Dominate configuration \(H + He^*\)
 - Branching dominate to \(H^+\) and He
- First set of resonances ~35eV
 - Dominate configuration \(H^* + He^*\)
 - Could produce \(He^+\) and H
HeH$^+$ and HeH Resonant States

- $^1\Sigma$
- $^3\Sigma$
- Resonances
- Resonance

Energy (eV) vs. Bond Distance (bohr)

- He* + H*
- He$^+$ + H
- He* + H
- He + H$^+$
Direct Dissociative Excitation

$v=0$

Cross section (cm2)

Energy (eV)
HeH$^+$ Direct Dissociative Excitation

Effect of Initial State Vibration

Cross Section (cm2)

Energy (eV)

$v=0$

$v=1$

$v=2$
Direct Dissociative Excitation

Comparison to Experiment ($v=0$)

- Expt
- Theory
- Theory (1991)

Cross Section (cm^2)

- 3×10^{-17}
- 2.5×10^{-17}
- 2×10^{-17}
- 1.5×10^{-17}
- 1×10^{-17}
- 5×10^{-18}
- 0

- 10
- 15
- 20
- 25
- 30
- 35
- 40
HeH⁺ New calculations
Ion-pair
Electronic resonant states of HeH of $^{2}\Sigma^{+}$ symmetry

Energy (H)

Internuclear distance (a_0)
Non-Adiabatic Couplings

Electronic resonant states of HeH of $^2\Sigma^+$ symmetry
No autoionization

Mutual Neutralization - Preliminary

Sifiso Nkambule
Future Plans

• Continue studies of direct dissociative excitation, resonant vibrational and dissociative excitation in HeH$^+$
 – Study effects of target vibrational excitation
 – Study effects of isotopic substitution

• Mutual Neutralization in He$^+$ H$^-$ collisions

• Continue studies of direct and indirect dissociative recombination in HeH$^+$
 – Final state distributions
 – Include ion-pair channel
 – Study effects of target vibrational excitation
 – Study effects of isotopic substitution