Behavior of tungsten under thermal and plasma exposure and development of advanced tungsten materials

Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, 52425 Jülich, Germany

3rd RCM on PWI with irradiated Tungsten and Tungsten Alloys in Fusion Devices, 27 - 30 June 2017, Vienna, Austria
Outline of FZJ contributions

- Thermal shock behavior of irradiated and un-irradiated W grades
- Change of W micro-structure under simultaneous heat and particle loads and impact on W erosion and fuel retention in W
- Development of advanced tungsten materials with improved micro-structure
- Characterization of commercially available tungsten grades
Environmental conditions - test facilities
Environmental conditions

- very high thermal loads
- plasma exposure
- neutrons
Environmental conditions

- very high thermal loads
- plasma exposure
- neutrons
Environmental conditions

Steady state heat loads:
- up to 20 MWm\(^{-2}\) in ITER (lower loads in DEMO)
 - recrystallization
 - failure of joints

Transient thermal loads:
- up to 60 MJm\(^{-2}\) (disrupt., ELMs, VDEs)
 - crackings
 - melting
 - dust formation

Plasma loads:
- sputtering
- hydrogen
- helium

Neutrons:
- up to 14 MeV
- defects
- transmutation

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich
Facilities at FZJ

Electron beam facility JUDITH 1
- max. power 60 kW
- acceleration voltage < 150 kV
- EB diameter ~1 mm (FWHM)

Linear plasma device PSI-2
- plasma diameter 60 mm
- particle flux ≤ 10^{23} m$^{-2}$s$^{-1}$
- incident ion energy (bias) 10 – 300 eV
- Nd:YAG laser 1064 nm
- laser energy 32 J
Low and high pulse number test
Environmental conditions

Expected heat loads in ITER divertor:

- **Disruptions**: 10^2 W/m², 100 ms, $n \sim 10^6$
- **MGI**: 0.3 GW/m², 3 ms, $n \sim 3000$
- **ELMs**: 1 GW/m², 0.5 ms, $n >> 10^6$
- **Divertor**: 5-20 MW/m², 450 s, $n \sim 30000$

Ref.
- J. Linke, Transactions of fusion science and technology 49 (2006) 455-464
Mechanical properties

Tensile tests
- deformation speed: 0.2 mm/min
- deformation rate: 10^{-4} s$^{-1}$
Thermal shock - damage mapping

- **Damage threshold**
- **Fracture strain**
- **Yield strength (0.2%)**
- **Base temperature [°C]**
- **Power density [GW/m²]**

1. Fracture strain ≈ 17 %
 - Yield strength (0.2%) ≈ 448 MPa
 - At 500 °C

2. Fracture strain ≈ 34 %
 - Yield strength (0.2%) ≈ 455 MPa
 - At 500 °C

3. Fracture strain ≈ 71 %
 - Yield strength (0.2%) ≈ 150 MPa
 - At 500 °C

- **Surfaces**
 - Transversal
 - Longitudinal

- **Damage states**
 - No damage
 - Surface modification
 - Small cracks
 - Crack network

- **Pulse duration** 1 ms
- **Absorption coefficient**: 0.55
- **100/1000 pulses**
High pulse number tests

Tungsten at high pulse numbers

Surface condition after testing pure W at $T_{\text{surf}} \approx 700 \, ^\circ\text{C}$ (10 MW/m2 SSHL)

- **no damage**
- **roughening**
- **small cr**
- **cr network**
- **cr+melting**

Damage threshold

- $\Delta t = 0.48 \, \text{ms}$
- $f_{\text{ELM}} = 25 \, \text{Hz}$
- abs. coeff.: 0.55

Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich

June 28 – Marius Wirtz

No. 12
High pulse number tests

Tungsten at high pulse numbers

Surface condition after testing pure W at $T_{surf} \approx 700$ °C (10 MW/m² SSHL)

Th. Loewenhoff et al., Physica Scripta T145 (2011) 014057
Institut für Energie- und Klimaforschung, Forschungszentrum Jülich
Investigation of fatigue effects

recrystallization

melting

recrystallization around crack edges

original grain structure

Th. Loewenhoff et al., Fusion Engineering and Design 87 (2012), 1201-1205

Institut für Energie- und Klimaforschung, Forschungszentrum Jülich
Influence of microstructure

Tungsten at high pulse numbers

Surface condition after testing pure W at $T_{\text{surf}} \approx 700 \, ^\circ\text{C}$ (10 MW/m2 SSHL)

- $\Delta t = 0.48 \, \text{ms}$
- $f_{\text{ELM}} = 25 \, \text{Hz}$
- abs. coeff.: 0.55

![Graph showing power density vs. number of pulses with damage threshold and small cr, cr network markers.](image-url)
Influence of microstructure

Tungsten at high pulse numbers

Surface condition after testing pure W at $T_{surf} \approx 700 \, ^\circ C$ (10 MW/m2 SSHL)

- Damage threshold lower for recrystallized and transversal material

$\Delta t = 0.48 \, ms$

$\lambda_{ELM} = 25 \, Hz$

$\lambda_{abs. \, coeff.} : 0.55$

$F_{HF} [\text{MW/m}^2 \cdot \text{sqrt(s)}]$ vs. number of pulses

$0 \rightarrow 10^7$

Power density [GW/m2]
Combined particle and heat flux exposure of tungsten
Combined tests in PSI-2

- commercially available sintered tungsten product
- representative example:

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Description</th>
<th>Microstructure</th>
<th>Characterization at 1000 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transversal</td>
<td>50 µm polarized light</td>
<td></td>
<td>fracture strain ≈ 22 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>yield strength (0.2%) ≈ 370 MPa</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>50 µm polarized light</td>
<td></td>
<td>fracture strain ≈ 17 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>yield strength (0.2%) ≈ 340 MPa</td>
</tr>
<tr>
<td>Recrystallized</td>
<td>50 µm polarized light</td>
<td></td>
<td>fracture strain ≈ 68 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>yield strength (0.2%) ≈ 100 MPa</td>
</tr>
</tbody>
</table>

- characterization of the high pulse number thermal shock performance (fatigue) with steady state particle background
High pulse number tests in PSI-2

Laser beam
ELM-like heat loads at 730 °C
absorbed power density: 0.38 GW/m²
pulse duration: 0.5 ms (f = 10 Hz)

H/He (6 %) - Plasma
particle energy ≈ 35 eV
plasma flux ≈ 6.0 \times 10^{21} \text{ m}^{-2}\text{s}^{-1}
fluence ≈ 9.0 \times 10^{24} \text{ m}^{-2} / 6.0 \times 10^{25} \text{ m}^{-2}
High pulse number tests in PSI-2

10,000 pulses

100,000 pulses
Surface roughness and structure

Arithmetic mean roughness (R_a)
- significant increase for higher number of pulses (accumulation of plastic deformation)
- high strength/low ductility of the transversal and longitudinal grain orientation leads to severe damage
- lower strength/higher ductility of the recrystallized materials leads to a faster damage evolution but lower R_a values after high pulse numbers

Hill and valley structure after 100,000 pulses
- severe hill and valley structure
- height differences up to 425 µm
- could be an indication for erosion of large parts of the surface (dust formation, plasma contamination)
- enhanced risk of overheating/melting, especially for low angle of incident
Comparison PSI-2 and JUDITH 2

PSI-2 (laser + plasma)
JUDITH 2 (pure thermal)

100,000 pulses
Comparison PSI-2 (laser + plasma) and JUDITH 2 (pure thermal)

- combination of steady state particle background with transient thermal loads leads to a much faster damage evolution (fatigue) compared to pure thermal (\Rightarrow H/He embrittlement, degradation of mechanical strength)
- effect of lower strength/higher ductility of the recrystallized materials also reflected in the pure thermal results

Th. Loewenhoff et al., Fusion Engineering and Design 87 (2012), 1201-1205
Microstructural changes

10,000 pulses

100,000 pulses

- near surface microstructural changes occur already after 10,000 pulses
- region increases for higher pulse numbers
- sub-grains/grain nucleation can be observed

EBSD Band Contrast Image + Grain Boundaries (≥ 5°)
Microstructural changes

- 10,000 pulses
- 100,000 pulses

EBSD Band Contrast Image + Grain Boundaries (red: 3.5° up to 10°, black: > 10°)

- Microstructural changes also visible for recrystallized material (1600 °C, 1 h)
- Formation of small angle grain boundaries, grain refinement, dynamic recrystallization
- Increase of the effected zone with higher number of pulses
- significant increase of the depth from 10,000 to 100,000 pulses
- depth of the zone depends on the time (number of pulses) and temperature gradient ⇒ saturation for higher number of pulses?
- change of the mechanical properties in a near surface region ⇒ reduced strength/higher ductility like for the recrystallized material?
- impact on the diffusion/retention of H/He not clear ⇒ possibly higher retention as reported in: A. Huber et al. Physica Scripta T167, art. no. 014046 (2016)
Microstructural changes

100,000 pulses

PSI-2 (laser + plasma)

JUDITH 2 (pure thermal)
FIB cuts and He bubbles/layer

10,000 pulses

- He bubbles/layer only visible (in SEM) in the **laser + plasma** exposed area after 10,000 pulses

100,000 pulses

- He bubbles/layer become visible (in SEM) in the **laser + plasma** and **only plasma** exposed area after 100,000 pulses
Size of the visible He bubbles

- size of the visible bubbles increases for higher number of pulses/fluence
- additional transient heat loads accelerate this effect
- impact on the He bubble density not clear

Size of the He effected layer

- depth of the He affected layer increases with number of pulses/fluence
- additional transient heat loads result in an extension of the He affected layer
- higher thermal gradients could lead to a deeper diffusion into the bulk material
D

Tungsten characterization
W monoblock after HHF testing

SMALL SCALE MOCK-UPS

<table>
<thead>
<tr>
<th>A) 1000 cycles at 10 MW/m²</th>
<th>C) 1000 cycles at 10 MW/m² + 500 cycles at 20 MW/m²</th>
<th>D) 1000 cycles at 10 MW/m² + 1000 cycles at 20 MW/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- no visible defects in tungsten
- small cracks in copper
- recrystallization → enhanced for HRP (≤ 2 mm)
- surface roughening / erosion → enhanced for HIP
- cracking → enhanced for W-sheet / HRP
- recrystallization → HRP (2-4 mm)
- surface roughening / melting → peak/valley of ≤ 500 μm

VERTICAL TARGET PROTOTYPICAL COMPONENTS (VTPCs)

<table>
<thead>
<tr>
<th>A) 1000 cycles at 10 MW/m²</th>
<th>B) 1000 cycles at 10 MW/m² + 1000 cycles at 15 MW/m²</th>
<th>E) 1000 cycles at 10 MW/m² + 1000 cycles at 15 MW/m² + 300 cycles at 20 MW/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- cracking → W-sheet / HRP® (initially existing damage?)
- cracking → W-rod / HIP®
- recrystallization (2-4 mm)
- surface roughening / erosion → enhanced for W-rod / HIP®
- cracking

June 28 – Marius Wirtz
Difference in W Materials

- **Observation**
 - Self-castellation often appeared in W monoblocks used by EU industry

- **Conformity of W material with ITER material specification**
 - Chemical composition: similar
 - Hardness: similar
 - Density: similar

<table>
<thead>
<tr>
<th></th>
<th>W-Plansee</th>
<th>W-Polema</th>
<th>W-ALMT</th>
<th>W-AT&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV30</td>
<td>441</td>
<td>443</td>
<td>461</td>
<td>448</td>
</tr>
<tr>
<td>density [g/cm³]</td>
<td>19.25</td>
<td>19.12</td>
<td>19.17</td>
<td>19.25</td>
</tr>
</tbody>
</table>

- Microstructure: different

 N.B. production routes are different (e.g. forged bar vs rolled plates)

- **Microstructure**
 - Strength in y-direction would be different

See supporting data in M. Wirtz, et al. presented at SOFT2012 http://dx.doi.org/10.1016/j.fusengdes.2013.05.07
Recrystallization Sensitivity Tests

- Heat treatment at 1300 °C, 1500 °C, 1800 °C for 1 hour in vacuum
- Test surface yz-plane
- Vickers hardness HV30, microstructure and grain size

Temperature profiles up to 1300, 1500 and 1800 °C for the annealing treatment of the tungsten products

High temperature furnace with the position of the thermocouples.
Vickers Hardness HV30
tested surface xy-plane
temperature treatment for 1 h

xy-plane
Vickers Hardness HV30
tested surface yz-plane
temperature treatment for 1 h

yz-plane

Hardness Measurements

June 28 – Marius Wirtz
Institut für Energie- und Klimaforschung, Forschungszentrum Jülich
No. 35
Hardness difference of the xy and yz-plane temperature treatment for 1 h

\[\Delta(xy/yz)\text{-plane} \]
Investigated surface xy-plane

<table>
<thead>
<tr>
<th>Temperature</th>
<th>RT</th>
<th>1300 °C</th>
<th>1500 °C</th>
<th>1800 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALMT</td>
<td>0.63</td>
<td>0.53</td>
<td>0.62</td>
<td>0.55</td>
</tr>
<tr>
<td>Ansaldo Polema</td>
<td>0.59</td>
<td>0.53</td>
<td>0.59</td>
<td>0.61</td>
</tr>
<tr>
<td>AT&M</td>
<td>0.61</td>
<td>0.62</td>
<td>0.59</td>
<td>0.60</td>
</tr>
<tr>
<td>Plansee (M213)</td>
<td>-</td>
<td>0.59</td>
<td>0.63</td>
<td>0.63</td>
</tr>
<tr>
<td>MMC NSMC</td>
<td>0.62</td>
<td>0.63</td>
<td>0.63</td>
<td>0.65</td>
</tr>
<tr>
<td>STARCK</td>
<td>0.53</td>
<td>0.67</td>
<td>0.62</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Grain size xy-plane

- **P1**: Blue
- **P2**: Red
- **P3**: Green
- **P4**: Purple
- **P5**: Cyan
- **P6**: Orange

Microstructural observation

- **RT**: 1800 °C
- **1300 °C**: 1500 °C
- **1500 °C**: 1800 °C

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>ALMT</th>
<th>Ansaldo Polema</th>
<th>AT&M</th>
<th>Plansee (M213)</th>
<th>MMC NSMC</th>
<th>STARCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>0.63</td>
<td>0.59</td>
<td>0.61</td>
<td>-</td>
<td>0.62</td>
<td>0.53</td>
</tr>
<tr>
<td>1300 °C</td>
<td>0.53</td>
<td>0.53</td>
<td>0.62</td>
<td>0.59</td>
<td>0.59</td>
<td>0.67</td>
</tr>
<tr>
<td>1500 °C</td>
<td>0.66</td>
<td>0.61</td>
<td>0.55</td>
<td>0.59</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>1800 °C</td>
<td>0.55</td>
<td>0.66</td>
<td>0.61</td>
<td>0.60</td>
<td>0.63</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Investigated surface yz-plane

<table>
<thead>
<tr>
<th>aspect ratio</th>
<th>ALMT</th>
<th>Ansaldo</th>
<th>AT&M</th>
<th>Plansee (M213)</th>
<th>MMC NSMC</th>
<th>STARCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>0.50</td>
<td>0.47</td>
<td>0.48</td>
<td>0.50</td>
<td>0.36</td>
<td>0.27</td>
</tr>
<tr>
<td>1300 °C</td>
<td>0.50</td>
<td>0.43</td>
<td>0.53</td>
<td>0.65</td>
<td>0.49</td>
<td>0.61</td>
</tr>
<tr>
<td>1500 °C</td>
<td>0.56</td>
<td>0.69</td>
<td>0.60</td>
<td>0.59</td>
<td>0.57</td>
<td>0.60</td>
</tr>
<tr>
<td>1800 °C</td>
<td>0.54</td>
<td>0.70</td>
<td>0.53</td>
<td>0.64</td>
<td>0.64</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Summary & Outlook

- Extensive characterization of the thermal shock behavior of W (interaction between material properties and damage behavior)
- Synergistic effects of particle and transient heat loads on thermal shock performance of W (H/He embrittlement, microstructural changes)
- Development of advanced tungsten materials with improved micro-structure
- Characterization of commercially available and new developed W grades

- Selection of W reference materials/samples for n-irradiation
- Thermal shock exposure of W reference materials after n-irradiation/comparison with un-irradiated damage response
- Thermal shock exposure of new developed W grades (e.g. PIM, Wf/W)
- Synergistic effects of particle and transient heat loads on thermal shock performance of reference W and new developed W grades after n-irradiation
- Characterization of the thermal and mechanical properties after n-irradiation