Theoretical calculation on electron and molecular ion collisions relevant to divertor plasma

Hidekazu Takagi
Kitasato university

Peculiar to molecule

- Vibrational and rotational freedom
- Dissociation, excited fragments
- Variety = State specific cross section
- Isotope effect

Needs of theoretical calculations

Molecular Assisted Recombination

- H_2^+ excited fragments $<$fuel$>$
- H_3^+ $<$dominant$>$
- CH_n^+ open shell $<$contamination$>$
- HeH^+ no crossing $<$product$>$

Their isotopes: D, T, 3,4He

Electron energy: 0.001—30eV $(1/E)$

NeH$^+$, He$_2^+$

Collision energy of electrons

- 1 eV

Rotational motion
Electronic excitation
Recombination
Indirect process

Bottleneck of Theoretical Calculation

Reliability: Over perturbation Theory
- Large scale calculation
 (partial waves, including states)

Applicability: Energy range
- Open shell electronic configuration
- Polyatomic molecules

Give a breakthrough to the bottleneck

Over perturbation theory /H_2^+

Ionic state: single-electron ex.
Dissociative state: two-electron ex.
Configuration Interaction V
Capture into Rydberg state
Non-adiabatic interaction

<Two-step method>
Brief history of theory

CI: Brdsley 1968, Resonance Theory
Perturbation, Algebraic solution

NAI: Multichannel Quantum Defect Theory
Seaton 1969, General formulation
Fano 1970, Rotation
Jungen Atabek 1977, Vibration
Giusti 1980, Two-step method, DR

Scattering by the CI

Lippman-Schwinger eqn. for K matrix

\[K = V + V_G K \]

Perturbation (Born series): not converge generally
Algebraic method: Chebyshev quadrature

\[V_{rad} = C(R) \int V_{CI}(r) P_{CI}(r) \phi(r) dr \]

\[V_{CI}(R) = \langle \phi_i(r;R) | H_{CI}(r;R) | \phi_i(r;R) \rangle R \]

CI as a function of R and E

\[V_{rad}(r) = \langle \phi_i(r;R) | H_{CI}(r;R) | \phi_i(r;R) \rangle R \]

Takagi, Hara, Sato 2009

H\(_2^+\) the lowest two-electron excited state

Low energy DR

Energies higher than 1 eV

Descretized dissociative state
E=0.3 --12 eV
H\(_2^+\), D\(_2^+\), HD^+

Dissociative Recombination
Dissociative Excitation
for each vibrational state

Takagi 2002 Phys scripta

Hydrogen mol. at low energies

Left problem: partial waves other than d\(\sigma\)
1st. perturbation for the other:
Data for D\(_2\), T\(_2\), DT could be easily obtained.

To increase reliability,
We develop new method for a breakthrough.
Main subject of us in this CRP

bottleneck

First order other than the lowest diss. St.

Limited below 12 eV: only first excited state of ion core is included

2nd order improves?

Fifiring & Store 2008

\[\sum E \int dE_v \frac{\langle \psi_{E_v} | \hat{H} | \psi_{E_v} \rangle}{E_v - E} \]

Assume V (CI) is independent of E.

\[V \] diverges logarithmically

Needs taking K diagonal elements

Non-crossing system/ HeH

Takagi 1999, 2004: MQDT + discretized dissociative states

- Satisfy boundary condition of standing wave
- Not being understood?
- Show the reason of large cross section

Haxton & Greene 2009: MQDT + Siegert-pseudosatate

- Many partial waves

R-matrix calc. for QD

Many partial waves

\[\mathbf{R} \] matrix calculation for QD

Physics for large cross section

With experiment Haxton & Greene

With experimental data

QD change and FC region

Determine the cross sections

Common property in noble gas hydride ions

Florescu, Takagi, Mitchell (unpublished)

CRP
Partial wave mixing

Takagi et al. 1991 for CH

\[\sum_{N'N} N' \langle N' N | R \rangle \langle R | N N' \rangle \]

Takagi 2004 for HeH

\[\sum_{N'N} N' \langle N' N | R \rangle \langle R | N N' \rangle \]

Curik, Greene 2007 for LiF

\[\sum_{N'N} N' \langle N' N | R \rangle \langle R | N N' \rangle \]

Effect of mixing

no-mixing

no-mixing

no-mixing

CH\(+\), Takagi et al. 1991

HeH\(+\), Takagi 2004

LiH\(+\), Curik & Greene 2007

Small effect

About ten times

H\(_3^+\) major abundance

Greene’s group 2001: Jahn-Teller coupling

Jungen & Pratt 2009

\[H (\rho, \phi) = \begin{pmatrix} W_0 + iN \rho^2 & f \rho e^{-i\phi} + g \rho^2 e^{2i\phi} \\ f \rho e^{i\phi} + g \rho^2 e^{-2i\phi} & W_0 + \frac{1}{2} \rho^2 \end{pmatrix} \]

Two-step method (traditional)

Non-adiabatic (present)

CRP: dissociation /LS eq.

MQDT: vibronic

CRP with dissociation

“strong non-adiabatic coupling representation”

Collision energy of electrons

1 eV

Rotational motion

Electronic excitation

Recombination

Indirect process

MQDT Frame Transform.

Hertzberg-Teller expansion

Adiabatic approximation in electron scattering

Energy & R

H\(_2\) (crossing exists)

K\(_E\)(R)
MQDT with dissociation

Discretization of dissociative states

\[\chi_R^{(A)} = \frac{1}{\sqrt{\Delta_\text{R}}} \int_{R_{\text{min}}^{(A)}}^{R_{\text{max}}^{(A)}} \chi_R^{(A)}(\bar{R}) d\bar{R} \]

Normalization: state (non-observed ch.)/energy (observed ch.) could change

For avoid singularity

Finite, non-singular

Boundary condition/Normalization

\[\Psi^{(A)}(r_a, R) = \sum_q C_q \phi_q(r_a) \chi_q(R) \]

MQDT outer region

\[\Psi^{(A)}(r_a, R) \to \sum_{L=0}^{\infty} \delta_{L,0} \phi_{L,0}(r_a) \chi_{L,0}(R) + K_{L,0}^{(A)}(r_a) \chi_{L,0}(R) \cos(kR) \]

All R region

\[K_{L,0}^{(A)} = \Delta_{L,0}^{-1/2} \nu_{L,0}^{3/2} K_{L,0}^{(A)} \]

Asymptotic wave function

An asymptotic wave function gives information on the final channels: each state and energy

Advantage over Siegert-pseudostate method

R-matrix calculation

Collaborator

Motomichi Tashiro (Institute for Molecualr Science)

UK R-matrix program

Now testing the present approach for HeH

Detail of quantum defect

Including partial wave mixing

HeH

Haxton & Greene

Takagi 2004

Tashiro (proceeding)

DVR method for tri-atomic dissociative states

Collaborator

Kazuhiro Sakimoto (Japan Aerospace Exploration Agency)

Our aim

Wide energy range (1meV—30eV)

Reliable and

For various (highly excited) rotation-vibration states
Plan for CRP

(1) CS by accurate CI for D_2, T_2, TD
 (H$_2$ was finished 2008, JAEA, Sawada)
 <finish in 2009>

(2) Over perturbation for every excited channels by R-matrix calc. for adiabatic electro. st. (HeH, H$_2$, NeH)

(3) Calc. by strong non-adiabatic coupling representation (H$_2$, CH)
 <partially obtain result in 2009>

(4) calc. on H$_3^*$
 <start 2009>