Generalized collisional radiative model for light elements: Boron

Stuart Loch1, Mitch Pindzola1, Teck Lee1, Shahin Abdel-Naby, Connor Ballance1, Don Griffin2, James Colgan3, Nigel Badnell4, and Martin O'Mullane4

1Auburn University, Auburn, AL \quad 2Rollins College, Winter Park, FL
3Los Alamos National Laboratory, Los Alamos, NM \quad 4University of Strathclyde, Glasgow, UK

This work was supported by grants from the US Department of Energy. The computational work was carried out on the NERSC and NICS supercomputers.
Outline

• Brief description of
 – Generalized Collisional Radiative theory (GCR)
 – The need for generalized atomic data in fusion

• Examples of GCR data

• New GCR data for boron
 – Description of the fundamental collision data
 – Overview of generating the GCR data
 – Examples of new GCR data

• What remains for GCR work on light species
The GCR approach for fusion applications

- The fundamental atomic data is processed through a collisional-radiative model to produce data that can be easily used in plasma impurity transport codes. The data is used to track:
 - the fractional abundance of the element as it transports in the plasma
 - The radiative power loss (electron cooling)

IAEA CRP on Light Elements: Wed 20th March 2013
The importance of GCR data in impurity transport modelling

- Impurity transport codes for fusion (SOLPS, TRANSP, SANCO etc) model the ion stage distribution of impurity species throughout the plasma.

- Both the ground and metastable populations must be tracked.

- The role of the excited states in the coefficients that connect the ion stages was also found to be important.

\[
\frac{dN_z}{dt}(\rho, t) = -\nabla \Gamma_z(\rho, t) - S_{z \rightarrow z+1}N_z(\rho, t) + S_{z-1 \rightarrow z}N_{z-1}(\rho, t) - \alpha_{z \rightarrow z-1}N_z(\rho, t) + \alpha_{z+1 \rightarrow z}N_{z+1}(\rho, t)
\]

\[\text{Tin impurity transport for the MAST experiment, taken from PhD thesis of Foster (2008)}\]

IAEA CRP on Light Elements: Wed 20th March 2013
The GCR coefficients

- Ionization

\[S_{CD,\sigma \rightarrow \nu} = (\mathcal{I}_{\nu \sigma} - \sum_{j=1}^{\mathcal{O}} \mathcal{I}_{\nu j} \sum_{i=1}^{\mathcal{O}} C_{ji}^{-1} C_{i \sigma}) \]

- Recombination

\[\alpha_{CD,\nu' \rightarrow \rho} = (\mathcal{R}_{\rho \nu'} + \sum_{j=1}^{\mathcal{O}} C_{pj} \sum_{i=1}^{\mathcal{O}} C_{ji}^{-1} \mathcal{R}_{i \nu'}) \]

- Photon emissivity

\[P_{LT,\sigma} = \sum_{k,j} \Delta E_{kj} A_{j \rightarrow k} \mathcal{F}_{j \sigma}^{(exc)} \]

\[\text{Ionizations per photon for impurity influx diagnostics} \]

\[\text{SXB}^z_{i-j} = \frac{S^{z \rightarrow z+1}(Ne, Te)}{A_{i \rightarrow j} \frac{N_i}{N_z}(Ne, Te)} \]

IAEA CRP on Light Elements: Wed 20th March 2013
Examples: GCR recombination rate coefficient

- At low densities DR dominates.
- At moderate densities, collisions reduce the DR (due to some of the excited states being collisionally ionized before it can radiate to the ground/metastable levels).
- At the highest densities, 3-body recombination takes over.
GCR ionization

Fig. 8. Effective ionization rate coefficient for the ionization process e + Li (1s² 2s² 3S) → Li⁺ (1s² 2s² 3P) + 2e as a function of electron temperature and density. Note that the density dependence comes in through the role of ionization from excited states.

Measurements of Li GCR ionization of the DIII-D tokamak

The problem of ionization from excited states

- So one needs data for ionization from the excited levels. However,
- Perturbative methods overestimate the ionization cross section for near neutral systems. *This gets worse for excited states.*
- Calculations using non-perturbative methods (TDCC, RMPS, CCC) become increasingly difficult for higher n-shells.
- There is a need to calculate data up to quite high n-shells.

Excited states ionization of neutral Boron

- Consider the ionization cross sections (RMPS) for the n=3 shell in neutral B.
 - Excitation-autoionization starts to contribute above about 10 eV and becomes smaller for the higher n-shells.
 - By fitting the direct ionization part we can see if there is an n-scaling in the cross sections.
 - If it was a purely classical calculation the scaling would go as \(n^4 \).
- We repeated the same study for \(B^+ \), and \(B^{2+} \).

n-scaling data for B, B$^\pm$ and B$^{2\pm}$

- For each of the ions a scaling very close to n^4 was found.
- Evaluate your non-perturbative calculation until scales as n^4, then extrapolate to higher n.
- Or you can fit semi-empirical data (e.g. ECIP) to the RMPS results and used the same scaling factor to scale to even higher n shells.
- Note that the bundled-n, or the spin-resolved data can be extrapolated.

GCR data

- GCR data for the light elements had already been generated within ADAS, using a range of atomic data.
- We have been going through each element and updating the atomic data (if needed), then generating new GCR coefficients:
 - Li: Loch et al., ADNDT, 92 813 (2006)
 - Be: Loch et al., ADNDT, 94 257 (2008)
- We just recently finished the GCR data for B.
Boron isonuclear sequence data sources

- **Dielectronic Recombination**

- **Excitation**
 [We have performed our own n=7 calculation that was used instead of this file]
 - B^{3+}: RMPS – Ballance (unpublished) – available at ADAS

- **Ionization**
The process of generating GCR data

- Start with excitation datafile (R-matrix)
 - Supplement with non-dipole A-values
- Add RR+DR data
- Add ionization data
- Generate data for high n-shells (projection matrix)
- Process data through ADAS collisional-radiative modeling codes.
B GCR results

• Note that B has the following metastables, so has quite a few metastable cross coupling coefficients.
 - B \(2s^22p \, (^2P) \), \(2s2p^2 \, (^4P) \)
 - \(B^+ \) \(2s \, (^2S) \), \(2s2p \, (^3P) \)
 - \(B^{2+} \) \(1s2s \, (^2S) \)
 - \(B^{3+} \) \(1s \, (^1S) \), \(1s2s \, (^3S) \)
 - \(B^{4+} \) \(1s \, (^2S) \)

• The data is needs some final checks, but should be released shortly.
B GCR results : ionization

- The excited states contribute significantly to the effective ionization.
- Note that the relative size of the excited state contribution decreases as one goes to higher charge states.

![Graphs showing ionization cross sections vs electron temperature for B, B⁺, and B²⁺.](image)
The state of carbon GCR

Dielectronic Recombination

Excitation
C4+: RMPS – Loch & Ballance, (unpublished) – available at ADAS
C+: Work in progress.
C: Yang et al. PRA 87 012704 (2013)

Ionization
Excited states of C3+ – Pindzola et al., JPCS 388, 062016 (2012)
Excited states of C+ - Ballance et al. PRA 84, 062713(2011)
Excited states of C - Abdel-Naby et al. PRA, 76022708 (2013)
Conclusions

• The GCR data for B is complete.
 – It requires a few more checks and then can be put into the databases.

• The next element on the list is carbon. The electron-impact excitation of C^+ needs to be done, along with the excited state ionization of C^{2+}. Then the GCR data can be generated.