Plasma surface interaction issues for steel as plasma-facing material – FZJ perspective: What experimental capabilities are available?

B. Unterberg
Institut für Energie- und Klimaforschung – Plasmaphysik
Forschungszentrum Jülich, Ass. EURATOM- Forschungszentrum Jülich, Trilateral Eurorad Cluster, D-52425 Jülich, Germany

IAEA consultancy meeting on plasma interaction with steel surfaces, Vienna, 20th of August 2014

Important aspects to be discussed for steel as plasma facing materials (con’t)

Fuel retention in steel with possibly modified surface composition
- Quantification of fuel retention in steel: impact of temperature, plasma impurities and surface morphology
- Characterization of trap sites (energy)
- Isope exchange in steel
- T permeation – development of permeation barriers
- Impact of irradiation defects on fuel retention in steel – compare damage by high energy ions and neutrons
- Comparison to diffusion trapping codes – coupling to codes which describe (preferential) sputtering?

Estimation of diffusion length of W in EUROFER

Diffusion length comparable to depth of enrichment zone
-W enrichment by preferential sputtering should be assessed experimentally!

Facilities at FZJ to investigate synergistic effects from heat and plasma load

Linear plasma device PSI-2 and laser irradiation facility
Further capabilities for post-mortem analysis:
- TDS / LID-QMA
- GDOES
- ion beam analysis (NRA, RBS, ERD) with tandem accelerators
- NRA, RBS, ERD, XPS and TDS on poly- and single-crystal samples (ARTOSS facility)
- FIB/SEM
- XPS, XRD
- Mirror lab

Analysis of virgin EUROFER sample by GDOES (no surface preparation)

<table>
<thead>
<tr>
<th>Element</th>
<th>Mass%</th>
<th>Limit of det. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>95.0%</td>
<td>0.48%</td>
</tr>
<tr>
<td>W</td>
<td>4.0%</td>
<td>0.12%</td>
</tr>
<tr>
<td>C</td>
<td>0.2%</td>
<td>0.02%</td>
</tr>
<tr>
<td>O</td>
<td>0.2%</td>
<td>0.22%</td>
</tr>
<tr>
<td>N</td>
<td>0.1%</td>
<td>0.12%</td>
</tr>
</tbody>
</table>

Linear plasma device PSI-2

Coils
Side-fed manipulator
Target station
TeAC
Plasma source
Laser techniques for surface characterization

- LIDS
 - In vacuum: LID
- LIAS
 - In vacuum: LIA
- LIBS

Laser break-down spectroscopy – example of a LIBS plasma in front of a aC:H on W layer

High resolution spectra from cross-dispersion echelle spectrometer

- Laser energy density 18 Jcm\(^{-2}\)

Laser induced desorption of hydrogen

- Qualified in the lab and extensively used at TEXTOR
- Currently being set-up at PSI-2

Graphite EK98 target exposed to TEXTOR plasma, LID measurement: 2.2\(\times\)10\(^{17}\) H/cm\(^2\) (±30%)

JULE-PSI – a new plasma device inside a Hot Cell to investigate PMI with n- irradiated materials

- PISCES-type plasma source
- Major components ordered (exposition chamber, magnets, pumps)
- Assembly outside controlled area I/2015