The EIRENE.DE online database for surface and A+M data in fusion edge modelling

Detlev Reiter | Institute of Energy Research – Plasma Physics |
OUTLINE

I Motivation (very short)

II Current plasma chemistry modeling activities in FZJ (short)

III Hydrogen and Helium Chemistry in Fusion Plasmas:
 the EIRENE code and the HYDKIN online toolboxes
Relative importance of plasma flow forces over chemistry and PWI

I core plasma \(\rightarrow\) II edge region \(\rightarrow\) III divertor

\[\text{div}(nv_{\parallel}) + \text{div}(nv_{\perp}) = \text{ionization/recombination/charge exchange} \]

II: midplain

parallel vs. (turbulent) cross field flow

III: target

parallel vs. chemistry and PWI driven flow

Dominant friction: \(p + H_2\)
Integrated edge plasma simulation: “From the barrier to the target”

Drift-Fluid turbulence: Attempt

EMC3 (& B2) CFD, 2D & 3D
Charged fluid parcels
m – 100 m scale

Mostly ITER contractual work

EIRENE
3D kinetic
Gyro centers,
Entire SOL and Core
mm - m scale

ERO, PEPC
“Real” ions (and electrons)
PSI in plasma, near solid
(sub-) cm scale

Input: Kinetic boundary conditions

PMI inside solid: TRIM.xxx,
Material science etc…,
nm-scale

Iter

ITER

MACRO

MICRO
ITER, B2-EIRENE simulation, fully detached, T_e field hotter than 1 Mill deg.
Atomic, Molecular and Surface physics is mainly integrated into fusion edge plasma codes via kinetic (Monte Carlo) solvers: DEGAS-2 (US), NIMBUS (stopped), NEUT2D (JP), EIRENE (EU), ...

B2 – EIRENE (ITER, since 1991, TEXTOR, ASDEX,…many more) (FV, 2D)

OSM – EIRENE (D-IIID, ITER,….)

EDGE2D – EIRENE (JET, since 2007) (FD, 2D)

FIDAP – EIRENE (Philips Lighting, finished, lamps marketed in 2008) (FEM, 3D)

+….many stand alone applications to specific physics questions
Numerical tool for the edge plasma transport: B2-EIRENE code package

SOLPS4.3: ITER.org (Cadarache) – FZ Juelich
jointly developed and applied: since about 15 years

Self-consistent description of the magnetized plasma, and neutral particles produced due to surface and volume recombination and sputtering

see www.eirene.de

B2: a 2D multi species (D\(^+\), He\(^{+;++}\), C\(^{4+;6+}\),...) plasma fluid code

EIRENE: a Monte-Carlo neutral particle, trace ion (He\(^+\), C\(^+\), C\(^{;++}\)) and radiation transport code.

Plasma flow Parameters

Source terms (Particle, Momentum, Energy)

CR codes: HYDKIN

Computational Grid
ITER contractual edge modelling

Goal: quantify PWI, when RMPs are applied in ITER
(EMC3-EIRENE 3D tokamak edge transport application)

F4E-GRT-055 (PMS-PE)
FZJ-IPP-CEA
(since July 2010)

Goal: diagnostic mirror lifetime assessment
(closing the gap between SOL and wall in B2-EIRENE)

ITER.CT.09.4300000034
FZJ (since Oct. 2009)

SOLPS4.x (ITER, FZJ) vs. SOLPS 5.y (IPP)

F4E-OPE-258
FZJ, Univ. St. Petersburg, (Dec. 2010)
FZJ activities:
Plasma Chemistry Modeling for Fusion

I) CAD design
II) grid generation ANSYS
III) 3D EIRENE
Monte Carlo Simulation
Erosion, Deposition (lifetime) of mirrors

PMI data: TRIM.xxx

BES, CXRS, Data: O.Marchuk et al.

Color: erosion rate inside port plug by Be wall impurities

Data: HYDKIN B2-EIRENE
The ITER design review found that PF coil set would not support range of operating space for 15 MA, $Q_{DT} = 10$ inductive scenario goals to be met when more realistic assumptions used:

- Excessive V-s consumption during I_p ramp-up \rightarrow restrictions on flattop time
- Peaked current profiles during ramp-up \rightarrow instability
- Broader current profiles due to H-mode pedestal \rightarrow PF6 coil current and field limits exceeded
- Central solenoid separation forces restricting operational space

Divertor dome and slot clearances of 2007 design too small for nominal operating points and during disturbance transients

- Modification of PF system \rightarrow Change in equilibrium
The geneology of ITER divertors
2007-2009: New reference design
B2-EIRENE: main ITER edge plasma design tool

Kukushkin A., Lisgo, S. et al. (ITER IO)
Kotov. V., Reiter D. et al., (FZ-J)
Pacher G. et al. (INRS-EMT, Varennes, Québec, Canada)

2004 reference

Calculations slow \(\rightarrow\) so use the previously studied variants to see the progression
Extend parallelization of EIRENE to B2-EIRENE (2008), + HPC-FF, ….
This work: “plasma chemistry modeling for magnetic fusion devices”

STRATEGIES FOR RAPIDLY DEVELOPING PLASMA CHEMISTRY MODELS*

Mark J. Kushner
University of Illinois
Dept. of Electrical and Computer Engineering
Urbana, IL, 61801, USA

October 1999

* Work supported by NSF, SRC and AFOSR/DARPA
BEFORE YOU WERE TASKED: A TOOLBOX

- In preparation of your task, you should have assembled a flexible computational toolbox.

Databases → Many, external ressources

DataBase Processor

Reaction Mechanisms

A "basic" global plasma model →

Visualizer and post-processor

B2-EIRENE

Many, often Matlab

University of Illinois
Optical and Discharge Physics
COMPONENTS OF YOUR TOOLBOX

Databases:

- Ion and Neutral transport coefficients
- Electron-impact cross sections
- Heavy particle reaction coefficients
- Gas/plasma-surface reaction probabilities

Data should be in as "unprocessed" a form as possible. (e.g., cross sections are preferred over Townsend coefficients)

DataBase Processor:

- Method to convert "raw" database to "model usable" coefficients (e.g., cross sections to rate coefficients)
 - Boltzmann solver
 - Maxwellian "integrator" of cross sections

University of Illinois
Optical and Discharge Physics
CONSTRUCTING YOUR DATABASE

- The most reliable, most understood, most readily available, best formatted and most "comfortable" databases available are those you build *yourself*

- Take FULL advantage of all external resources in building your database however devise a method of formatting, keeping track of references, revisions and updates which best suits *your* needs.

- *(DON'T ALLOW YOUR ABILITY TO ACCOMPLISH YOUR GOAL BE LIMITED BY SOMEONE ELSE'S DECISION TO UPDATE THE FORMAT OF THEIR DATABASE...)*

- In constructing your database, you will need to make value judgements on the goodness, appropriateness and validity of primary data sources or other databases.

- Make these decisions with some deliberate forethought as to what the database (or subsets of the database) will be used for.

University of Illinois

Optical and Discharge Physics*
www.eirene.de → A&M Data → HYDHEL, AMJUEL

Atomic & Molecular Database

Choose one of the A&M databases from the menu. For questions refer to the FAQ or contact us.

HYDK
Reaction kinetics for Hydrocarbon catalysis
Plasm

Hydride Database:

Methane family:
Ethane/Propane family:
Silane family:
Hydrogen family:

Juel-Report 3966:
Collision Processes of Hydrocarbon Species in Hydrogen Plasmas: I. Methane Family
(by R. Janev & D. Reiter)

Juel-Report 4005:
Collision Processes of Hydrocarbon Species in Hydrogen Plasmas: II. Ethane & Propane Families
(by R. Janev & D. Reiter)

Juel-Report 4038:
Collision Processes of Hydrocarbon Species in Hydrogen Plasmas: III. Silane Family
(by R. Janev & D. Reiter)

Juel-R...

All data, figs, and references: HERE
Our own homemade “database” for fusion plasma chemistry modelling, in this sense described by M. Kushner, is publicly exposed on: www.eirene.de

Reviewed EIRENE database Series 2002-…., (several IAEA CRP’s)
FZ-Jülich (R. Janev, D. Reiter et al.)

Methane (CH₃) C₂H₃ C₃H₃
Silane (SiH₃) p,H,H⁻,H₂,H₂⁺,H₃⁺

JUEL 3966, Feb 2002

JUEL 4005, Oct. 2002

JUEL 4038, Mar. 2003

JUEL 4105, Dec. 2003
Basic input for EIRENE: A&M data, (& surface data)
Goal: publicly expose raw data used in any modelling

www.hydkin.de

Online data base and data analysis tool-box:

- CR model condensation
- Sensitivity analysis
- Fragmentation pathway analysis
- Reduced models

• Hydrocarbons
• Silanes
• H, H₂, H₃⁺,….
• W, W⁺, ….W 74⁺
• N, N₂

Next GOAL: BeH, BH, ……
raw data → 2004 -- (ongoing)

HYDKIN database toolbox → Spectral (time scale) analysis

HYDKIN database toolbox → fragmentation pathways

HYDKIN database toolbox → Sensitivity analysis

Interface → EIRENE

EIRENE 3D Monte Carlo kinetic transport → TEXTOR, JET, ASDEX, DIII-D, JT-60, LHD, → ITER
Example: Hydrocarbon cross section database

Molecular Data analysis (www.HYDKIN.de):

IAEA, Data centers (ORNL, NIFS, …)

<table>
<thead>
<tr>
<th></th>
<th>CH$_4$</th>
<th>C$_2$H$_6$</th>
<th>C$_3$H$_8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>RKJ 2009</td>
<td>JR 2004</td>
<td>JR 2004</td>
</tr>
<tr>
<td>I-DI</td>
<td>RKJ 2009</td>
<td>RKJ 2009 #</td>
<td>JR 2004 ##</td>
</tr>
<tr>
<td>DI$^+$</td>
<td>RKJ 2009</td>
<td>JR 2004 #</td>
<td>JR 2004 #</td>
</tr>
<tr>
<td>CX-PR</td>
<td>2011 Upgrade ongoing: more low T reactions: Particle exchange</td>
<td>JR 2004</td>
<td>JR 2004</td>
</tr>
<tr>
<td>R-DR</td>
<td>JR 2002</td>
<td>RKJ 2009</td>
<td>RKJ 2009</td>
</tr>
</tbody>
</table>

- **DE**: Dissociative excitation of neutral molecules
- **DE$^+$**: Dissociative excitation of molecular ions
- **I-DI**: Ionisation and Dissociative Ionisation of neutral molecules
- **DI$^+$**: Dissociative Ionisation of molecular ions
- **CX-PR**: Charge exchange and particle re-arrangement
- **R-DR**: Recombination, Dissociative Recombination

new experiments planned Univ. Louvian la Neuve, P. Defrance et al.
Revision planned in 2011, Univ. Innsbruck, S. Huber et al., CPP 2011, in printing
Major difference to other online A@M toolboxes:

Not COL. RAD., but SPECTRAL A@M modelling (needed in transport codes for time-scale analysis)

→ Online sensitivity analysis possible !

Perhaps in the future:
Revised data reduction scheme (ILDM rather than CR):
Dauwe, Tytgadt, Reiter, JUEL 4229, Nov. 2006,
Available on www.eirene.de/html/relevant_reports
HYDKIN.de: online sensitivity analysis

Breakup of CH4 @ 40 eV (143 parameters)

Analytic solution for sensitivity, online

\[Z(t) = \frac{d(\ln[n_Y])}{d(\ln<\text{rate}>)} \]

Identify, print and plot the most sensitive parameters:

If \(<\text{rate}> \) changes by \(x \) %
Then \(n_Y \) changes by \(x \times Z \) %

At 40 eV (TEXTOR)
Only DE, I, DI processes are relevant,
(nearly) no dependence on transport at all
Analytic solution for sensitivity, online

\[Z(t) = \frac{d(\ln[n_Y])}{d(\ln<\text{rate}>)} \]

Identify, print and plot the most sensitive parameters:

If \(<\text{rate}>\) changes by \(x\) %
Then \(n_Y\) changes by \(x \times Z\) %

At 2 eV (detached divertor, PSI-2)
Only CX, DR processes are relevant, strong dependence on transport details
TRIM-codes family, online database for fully kinetic reflection velocity space PDFs

Legend:
- Eirene Reflection Database (TRIM-Code, section 1.1)
- W. Eckstein, "Calculated sputtering, reflection and range values", IPP-Report IPP 9/113, 2002
Storing full 3D pdf of reflected particles, for given incident energy (12) and angle (7) i.e. 84 tables for each target-projectile combination

Next: similar database for sputtering.

TRIM database (www.eirene.de)

Figure 1: Sample reflection data table, for D on Fe, 200 eV, 30 degrees incident energy and angle, respectively. Marked are the reflection energy, polar and azimuthal angles for the triple of random number (0.3, 0.5, 0.9)
Goal: replace various scalings (e.g. Yamamura for incident angle dependence) by full database, same format as for EIRENE-reflection database

Still not decided: how to parameterize
a) Surface roughness,
b) Material mixing

Universal sputtering law: Janev, Ralchenko, et al. for normal incidence yield.
Backup slides
The kinetic equation solved by EIRENE: www.EIRENE.de

Generic kinetic (transport) equation (L. Boltzmann, ~1870)

- for particles travelling in a background (plasma) between collisions
- with (ions) or without (neutrals, photons) forces (Lorentz, or guiding center) acting on them between collisions

Basic dependent quantity: distribution function \(f(\vec{r}, \vec{v}, t) \)

\[
\frac{\partial f(E, \bar{\Omega})}{\partial t} + v\bar{\Omega} \cdot \nabla f(E, \bar{\Omega}) + \text{Forces} = S(E, \bar{\Omega}) - v\sigma_a(E)f(E, \bar{\Omega})
\]

Free flight \hspace{1cm} \text{External source} \hspace{1cm} \text{Absorption}

\[
\int_0^\infty \int_{4\pi} dE' d\bar{\Omega}' \left[v' \sigma_s(E' \rightarrow E, \bar{\Omega} \cdot \bar{\Omega}) f(E', \bar{\Omega}') - v\sigma_s(E \rightarrow E', \bar{\Omega} \cdot \bar{\Omega}') f(E, \bar{\Omega}) \right]
\]

Collisions, boundary conditions

Altogether, just a balance in phase space
CR Models in Transport Codes

1) System of N kinetic (or fluid) equations (PDE, IDE), one for each species: H, H*, Ly_α…

2) Select M species, remove transport term and explicit time derivative
 (Interpretation: their lifetime is short compared to transport time)

3) System reduced to N – M transport equations plus one linear algebraic system (CR Model), of order M

The M states are in quasi steady state with the N – M transported species.
CR models are QSS models
Kinetic (transport) equation IDE, one for each species

\[\frac{\partial f(E, \Omega)}{\partial t} = \text{EIRENE:} \]

NFOL\(_i\)=-1 option

0 = \(S(E, \Omega) - \nu \sigma_a(E) f(E, \Omega) \)

External source Absorption

\[+ \int_0^\infty \int_0^{4\pi} \left[v' \sigma_s(E' \rightarrow E, \Omega', \Omega) f(E', \Omega') - \nu \sigma_s(E \rightarrow E', \Omega \cdot \Omega') f(E, \Omega) \right] d\Omega' dE' \]

Collisions, Boundary Conditions

Provides fully user controlled condensation of plasma chemistry into CR model, retaining all parametric dependencies in multidimensional reduced rates but, of course is also a patently foolish way to build CR models (by “Monte Carlo matrix inversion”).
N-M coupled Boltzmann eqs. for: \(f_i, \ i=1,...,N-M \)

\[\frac{\partial f}{\partial t} = \vec{M}f + \vec{S} \]

for: \(f_i, \ i=N-M+1,...,M \)

- No general rules for “condensation” of chemistry matrix \(M \) exist.
- Optimal condensation is highly cases dependent.
- Transport codes do not need CR-Model data (eff. rate coeff.), but the Master Matrix \(M \) and a solver “on the fly” embedded as sub-module into them.
- No a-priory “bundling” of states.
e.g. $\bar{y} = \begin{pmatrix} n_{CH_4} \\ n_{CH_4} \end{pmatrix}$ vector of species concentrations involved in reaction kinetics [particles/unit volume, mol/unit volume]

$\bar{b} = \begin{pmatrix} \Gamma_C \\ \Gamma_{CH} \end{pmatrix}$ influx (external source, reservoir [injected particles/s/unit volume, injected mol/s/unit volume]

$\bar{y}_{\text{loss}} = \begin{pmatrix} n_C/\tau_C \\ n_{CH}/\tau_{CH} \\ n_{CH_4}/\tau_{CH_4} \\ n_{CH_4}/\tau_{CH_4} \end{pmatrix}$ loss of species to external reservoir [loss particles/s/unit volume, loss mol/s/unit volume]

Contact: b.kueppers@fz-juelich.de
Corrections, addition

<table>
<thead>
<tr>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb., 28, 2007</td>
<td>Revision: energy depending branching ratios</td>
</tr>
<tr>
<td>June, 25, 2006</td>
<td>Memo added re. definition of D/XB values.</td>
</tr>
<tr>
<td>June, 9, 2006</td>
<td>partial cross sections for C<sub>2</sub> ionization and dissociative ionization channels added</td>
</tr>
<tr>
<td>April 28, 2006</td>
<td>Implemented: the (thermal) particle rearrangement channels (see plotform, under CX-PR)</td>
</tr>
<tr>
<td>Dec. 21, 2005</td>
<td>Implemented: excitation rates for Swan, Mulliken and 390nm HC-band, for S/XB evaluations</td>
</tr>
<tr>
<td>Dec. 19, 2005</td>
<td>Implemented: CAD (Capture auto dissociation channels) (could be relevant at energies well below threshold for DE<sup>+</sup> channels)</td>
</tr>
<tr>
<td>Dec. 14, 2005</td>
<td>Implemented: ADAS charge exchange recombination rates for atomic carbon ions, neutral H-density added as parameter</td>
</tr>
<tr>
<td>Dec. 10, 2005</td>
<td>Implemented: ADAS ionization and recombination rates for atomic carbon ions</td>
</tr>
<tr>
<td>Nov. 3, 2005</td>
<td>print all values of rates as used in transition matrix, see under matrix elements</td>
</tr>
<tr>
<td>Nov. 3, 2005</td>
<td>Sample case added, C<sub>2</sub>H<sub>4</sub> source</td>
</tr>
<tr>
<td>Nov. 2, 2005</td>
<td>thermal CX, PR components removed for ethane, propane families to avoid double counting was ok for methane family</td>
</tr>
</tbody>
</table>

Revisions 04-09: APID Vol. 16 (2011)

Issue: backward compatibility
NEW: added after Juel-Reports and PoP papers

NEW: surface reflection database
Choose plasma background
Integration time
Graphical presentation
Printout:

Reflect input as selected

(composition, initial condition, influx, transport losses, per species)

Printout in tabular form

<table>
<thead>
<tr>
<th>number</th>
<th>species</th>
<th>init.cond (#/unit volume)</th>
<th>influx (#/unit volume)</th>
<th>losstime (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>3</td>
<td>H₂⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>4</td>
<td>H₂</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>5</td>
<td>C²⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>6</td>
<td>C⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>8</td>
<td>CH⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>9</td>
<td>CH</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>10</td>
<td>CH₂⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>11</td>
<td>CH₂</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>12</td>
<td>CH₃⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>13</td>
<td>CH₃</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>14</td>
<td>CH₄⁺</td>
<td>0</td>
<td>0</td>
<td>1e+300</td>
</tr>
<tr>
<td>15</td>
<td>CH₄</td>
<td>0</td>
<td>1</td>
<td>1e+300</td>
</tr>
</tbody>
</table>

C⁺(3H) lost to external reservoir
H₂ final (absorbing) state (Eigenvalue = 0)
H₂⁺ final (absorbing) state (Eigenvalue = 0)
H⁺ final (absorbing) state (Eigenvalue = 0)
H final (absorbing) state (Eigenvalue = 0)

Printout in tabular form

- matrix elements
- Table reactions - species
- Output for EIRENE
- printout of solution in tabular form

Output for interface to EIRENE

All individual rates used
Solution, vs. time (distance)

Here: $0 \rightarrow 1 \times 10^{-4}$ s

Species selected for printout and plotting
Online solution of time-dep. (1D) Hydrocarbon breakup, for any prescribed divertor plasma conditions, up to C$_3$H$_8$
Diagnostics from this run at $t = t_{\text{max}} = 1.0 \times 10^{-3}$ s

T_e [eV] = 25
T_p [eV] = 25
T_H [eV] = 10
n_0 [#/cm3] = 1.0×10^{13}
n_p [#/cm3] = 1.0×10^{13}
n_H [#/cm3] = 1.0×10^{13}

E_0 [eV] = 1
total influx [#/s/unit volume] = 1.00×10^0

production and loss rates at $t = t_{\text{max}} = 1.0 \times 10^{-3}$ s

<table>
<thead>
<tr>
<th>Species</th>
<th>external source</th>
<th>production rate</th>
<th>loss rate</th>
<th>dy/dt</th>
<th>abs. error at $t = t_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>reservoir p</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
<td>-2.669383e-01</td>
<td>-6.726742e+00</td>
<td></td>
</tr>
<tr>
<td>reservoir e</td>
<td>0.000000e+00</td>
<td>1.082178e+01</td>
<td>-6.726742e+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reservoir H</td>
<td>0.000000e+00</td>
<td>0.000000e+00</td>
<td>-4.737731e-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H^+</td>
<td>0.000000e+00</td>
<td>1.314818e+00</td>
<td>0.000000e+00</td>
<td>1.314818e+00</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.000000e+00</td>
<td>1.990817e+00</td>
<td>0.000000e+00</td>
<td>1.990817e+00</td>
<td></td>
</tr>
<tr>
<td>H_2^+</td>
<td>0.000000e+00</td>
<td>4.985027e-02</td>
<td>0.000000e+00</td>
<td>4.985027e-02</td>
<td></td>
</tr>
<tr>
<td>H_2</td>
<td>0.000000e+00</td>
<td>4.558201e-01</td>
<td>0.000000e+00</td>
<td>4.558201e-01</td>
<td></td>
</tr>
<tr>
<td>C^+</td>
<td>0.000000e+00</td>
<td>1.052959e+00</td>
<td>1.052959e+00</td>
<td>1.052959e+00</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.000000e+00</td>
<td>7.009571e+01</td>
<td>-7.009571e+01</td>
<td>7.009571e+01</td>
<td></td>
</tr>
<tr>
<td>OH^+</td>
<td>0.000000e+00</td>
<td>5.855668e+01</td>
<td>-5.855668e+01</td>
<td>6.069494e+01</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>0.000000e+00</td>
<td>4.723670e-01</td>
<td>-4.723670e-01</td>
<td>6.862297e-13</td>
<td></td>
</tr>
<tr>
<td>CH_2^+</td>
<td>0.000000e+00</td>
<td>5.208546e-01</td>
<td>-5.208546e-01</td>
<td>-2.639000e-13</td>
<td></td>
</tr>
<tr>
<td>CH$_2$</td>
<td>0.000000e+00</td>
<td>3.835393e-01</td>
<td>-3.835393e-01</td>
<td>1.370015e-13</td>
<td></td>
</tr>
<tr>
<td>CH_3^+</td>
<td>0.000000e+00</td>
<td>5.341870e-01</td>
<td>-5.341870e-01</td>
<td>5.551115e-15</td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>0.000000e+00</td>
<td>3.812394e-01</td>
<td>-3.812394e-01</td>
<td>-1.238789e-14</td>
<td></td>
</tr>
</tbody>
</table>
Spectral analysis of reaction kinetics

- Non-zero eigenvalues: 11, \(|\lambda_{\text{min}}| = 1.049495 \times 10^4\), \(|\lambda_{\text{max}}| = 2.231726 \times 10^6\)
- Stiffness parameter: \(\lambda_{\text{max}} / \lambda_{\text{min}} = 2.126476 \times 10^2\)
- Number of non-zero eigenmodes with \(|\lambda| \leq 1000 \times 1.049495 \times 10^4\): 11
- Used non-zero eigenvalues: 11
- Re-evaluate solution with 11 non-zero eigenmodes.

Derived Quantities

1. D/XB

The D/XB values depend upon experimental details (spectral range, ro-vibrational distribution of emitter molecule, etc.). Only certain "reference light emission rates" are utilized in HYDKIN, see memo D/XB.

<table>
<thead>
<tr>
<th>Band</th>
<th>Transition</th>
<th>Ref</th>
<th>Density [#/unit volume]</th>
<th>(<\text{ex}) [cm(^3)A]</th>
<th>D/XB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH(_4)X, Gerd-band (430nm)</td>
<td>CH: 4.710934e-07</td>
<td>CH4L: 5.455710e-07</td>
<td>(<\text{emis}> = 5.182375e-09)</td>
<td>4.096040e+01</td>
<td>direct excitation of CH</td>
</tr>
<tr>
<td>CH(_4)X, Gerd-band (430nm)</td>
<td>CH4: 5.455710e-07</td>
<td>CH4L: 5.455710e-07</td>
<td>(<\text{emis}> = 4.650862e-10)</td>
<td>3.941267e+02</td>
<td>dissociative excitation of CH4</td>
</tr>
<tr>
<td>CH(_3)X (390nm)</td>
<td>CH: 4.710934e-07</td>
<td>CH4L: 5.455710e-07</td>
<td>(<\text{emis}> = 1.417931e-06)</td>
<td>1.497056e+02</td>
<td>direct excitation of CH</td>
</tr>
<tr>
<td>S(^+)</td>
<td>513.9 A</td>
<td>ADAS</td>
<td>C(^-): 1.018439e-05</td>
<td>(<\text{emis}> = 8.242522e-11)</td>
<td>0.000000e+00</td>
</tr>
<tr>
<td>C(^{2+})</td>
<td>4159.9 A</td>
<td>ADAS</td>
<td>C(^{2+}): 9.471070e-05</td>
<td>(<\text{emis}> = 2.683128e-16)</td>
<td>0.000000e+00</td>
</tr>
</tbody>
</table>

D/XB, Examples

\(<\text{emis}>\), Examples
Very complex reaction chains (approx. 500 individual processes) in fusion plasmas: catabolic sequence dominant, little: anabolism → Eigenmode analysis of reaction rate equations very simple: → Define “Stiffness parameter”: $\lambda_{\text{max}} / \lambda_{\text{min}}$, ratio of max. to min. eigenvalues

Fast **Slow**

Stiffness Parameter for Hydrocarbon catabolism

![Diagram showing the stiffness parameter for hydrocarbon catabolism](image-url)
Combustion and flame modelling is mathematically analogous to diffusion-reaction modelling of ITER divertor detachment.

Unfortunately: reduced models ("intrinsic low dimensional manifolds, ILDM") only applicable at very low plasma temperatures.

Number of remaining eigenmodes for \(\lambda_{\text{max}} / \lambda_{\text{min}} < 100 \).

Species to be retained

Full reaction kinetics required

- CH4
- C2H6
- C3H8