ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY

By
Sumona Gangopadhyay

Department of Physics
Sardar Patel University
Vallabh Vidyanagar, Gujarat, INDIA

Research Field: THEORETICAL ATOMIC & MOLECULAR PHYSICS
Research Topic: CROSS SECTIONS OF ATOMS, MOLECULES & CLUSTERS
Acknowledgement

- My Ph. D guide
 Prof. K. N. Joshipura
 (Head of the Department)

- ISRO Respond Project, Bangalore

- Organizers of present ICTP/IAEA Workshop
Outline of the Talk

- Why this work?
- Theoretical Methods Employed
 - SCOP & CSP-ic
 - Theory
 - Results
- Summary & Conclusion
- Merits & Demerits
Applications

- Electron is an effective source for ionization
- Applications of e-atom / molecule CS to,
 - Atmospheric Sciences (Ozone, Climate change etc.)
 - Astrochemistry (Auroral phenom., Electro Glow, UV emissions, etc)
 - Astrophysics (Comets, molecular processes in stellar formation, interpreting new spectral measurement, etc)
 - Plasma Physics (Plasma etching, Semiconductor Physics)
 - Understanding & modeling plasmas in fusion devices
 - In Bio-physics (medical science) etc, Radiation therapy.
Current scenario

- **Experimental methods**
 - Different research groups work on different regions of E_i
 - Problems of reactive targets, e.g. radicals (CH, NH, OH, NO etc)
 - Ionization measurements are generally uncertain by 10-15%
 - Neutral dissociation e.g. CH$_4$ fragmentation
 (experimental uncertainty 30 - 35% (Nakano et al. 1991))
 - Bio-molecular targets and condensed matter experiments

- **Accurate theoretical methods**
 - Slow calculations
 - Limitation to energy range
 - Limitation to targets

- **Need for simple, reliable and fast calculations**
Present Theoretical Method

Total elastic cross sections Q_{el}

Total inelastic cross sections Q_{inel}

Total (complete) cross sections Q_T

Total ionization cross sections Q_{ion}

Summed total excitation cross sections ΣQ_{exc}

Grand total cross section Q_{TOT}

Total non spherical cross sections Q_{rot}

Rate Coefficients, Macroscopic cross sections (Σ_{inel}, Σ_{ion}, Σ_{el}), Collision Frequency (ν), Mean Free Path (Λ_{el}, Λ_{inel}, Λ_{el}).

Rotational cross sections Polar molecule e.g. H$_2$O

Present energy range \rightarrow From ionization threshold to 2 keV
Spherical Complex Optical Potential (SCOP)

- **Spherical Complex Optical Potential**, \(V_{opt} = V_R + i V_I \)

- **Final Form of the Complex Optical Potential**

\[
V_{opt} = V_{st} + V_{ex} + V_{pol} + i V_{abs}
\]

Variable Phase Method

The PHASE EQUATION given by Calogero is of the form

\[
\delta'_l(kr) = -\frac{2}{k} V(r)[\cos \delta_l(r) \cdot \hat{j}_l(kr) - \sin \delta_l(r) \cdot \hat{n}_l(kr)]^2
\]

The function \(\delta_l(kr)\) is the phase function.

- It vanishes at the origin
- It yields asymptotically directly the value of scattering phase shift

Using Spherical Complex Optical Potential and complex phase shift,

\[
\delta_l(kr) = \delta_R(kr) + i \delta_I(kr) \quad \text{and} \quad V(r) = V_R(r) + i V_I(r)
\]

We get a set of first order coupled differential equations for real \((\delta_R)\) and imaginary \((\delta_I)\) parts of the complex phase shift function under the VPA.

\[
\delta_R'(kr) = -\frac{2}{k} [V_R(r) \cdot (X^2 - Y^2) + 2V_{abs}(r) \cdot XY]
\]

\[
\delta_I'(kr) = -\frac{2}{k} [-2V_R(r) \cdot XY + V_{abs}(r) \cdot (X^2 - Y^2)]
\]

where

\[
X = \cosh \delta_I(kr)[\cos \delta_R(kr) \cdot \hat{j}_l(kr) - \sin \delta_R(kr) \cdot \hat{\eta}_l(kr)]
\]

\[
Y = \sinh \delta_I(kr)[\sin \delta_R(kr) \cdot \hat{j}_l(kr) + \cos \delta_R(kr) \cdot \hat{\eta}_l(kr)]
\]

We solve these set of coupled equation by fourth order Runge Kutta - Method and obtain the complex phase shift.
For $l = 0$, at 100 eV
Scattering Calculations

- **Calculate the S - matrix**

\[S_l(k) = \exp(-2\delta_l) \exp(i2\delta_R) \]

- **Finally the cross sections**

\[Q_{inel} = \frac{\pi}{k^2} \sum_{l=0}^{l_{max}} (2l + 1) [1 - |S_l(k)|^2] \]

\[Q_{el} = \frac{\pi}{k^2} \sum_{l=0}^{l_{max}} (2l + 1) |1 - S_l(k)|^2 \]

\[Q_T = \frac{2\pi}{k^2} \sum_{l=0}^{l_{max}} (2l + 1) [1 - \Re S_l(k)] \]
Scattering Calculations continued...

The total (complete) cross section is given by

\[Q_T(E_i) = Q_{el}(E_i) + Q_{inel}(E_i) \]

\[Q_{inel}(E_i) = \sum Q_{ion}(A^{+n}) + \sum Q_{exc} \]

Where \(\Sigma Q_{ion}(E_i) = \) The total of all total ionization cross-sections for all energetically allowed states with \(A^{+n} \) as the charge state of the ion.

\(\Sigma Q_{exc}(E_i) = \) Summed total electronic excitation cross section

The quantity \(Q_{inel} \) is not measurable directly in experiments. \(Q_{el} \) is obtained by integrating measured elastic DCS. \(Q_T \) (or \(Q_{TOT} \) for polar molecules) is separately determined in total transmission experiments.
The Complex Scattering Potential-ionization contribution, CSP-ic method for Q_{ion}

The CSP-ic originates from the inequality,

$$Q_{inel}(E_i) \geq Q_{ion}(E_i)$$

The Q_{inel} contains Q_{ion}, but how to extract it?

It is reasonable to define a ratio

$$R(E_i) = \frac{Q_{ion}(E_i)}{Q_{inel}(E_i)}$$

First ever estimate of ionization in relation to excitation processes was made by Turner et al for $e - H_2O$ scattering near 100 eV.

$$\frac{\sigma_{ion}}{(\sigma_{ion} + \sigma_{exc})} \approx 0.75$$

The ratio R is proposed to be of the form, $1 - f(U)$

$$U = \frac{E_i}{I}$$

\Rightarrow Target specific

$$f(U) = C_1 \left[\frac{C_2}{U + a} + \frac{\ln U}{U} \right]$$

$$R(E_i) = 1 - C_1 \left[\frac{C_2}{U + a} + \frac{\ln U}{U} \right]$$

Above ratio has three conditions to satisfy:

$$R(E_i) = \begin{cases}
0, & \text{at } E_i \leq I \\
R_p, & \text{at } E_i = E_p \\
\sim 1, & \text{for } E_i \gg E_p
\end{cases}$$

This is the method of CSP-ic.

• At E_p, R_p is found to be between 70 – 80 %.

• 80% observed in the case of higher IP like Ne (21.56 eV).

• Most of the target studied here have their IP varying from 9 - 15 eV.

• Thus we have selected the lower R_p limit.

For polar targets we add rotational dipole cross sections (non-spherical contribution) to the Q_T and calculate grand total cross section Q_{TOT}
Targets studied in present work

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Atmospheric molecules</th>
<th>Radicals and parent molecules</th>
<th>Compounds of Silicon</th>
<th>Oxides of Sulfur</th>
<th>Exotic atomic-molecular systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>H₂</td>
<td>CH</td>
<td>Si</td>
<td>SO</td>
<td>C₂</td>
</tr>
<tr>
<td>N</td>
<td>O₂</td>
<td>OH</td>
<td>SiO</td>
<td>SO₂</td>
<td>C₃</td>
</tr>
<tr>
<td>O</td>
<td>N₂</td>
<td>CS₁,CS₂</td>
<td>SiO₂</td>
<td>SO₂Cl₂</td>
<td>C₂O</td>
</tr>
<tr>
<td></td>
<td>O₃</td>
<td>CN</td>
<td>SiH₄</td>
<td>SO₂F₂</td>
<td>H₂CO</td>
</tr>
<tr>
<td></td>
<td>CO</td>
<td>NH₂</td>
<td>Si₂H₆</td>
<td>SO₂ClF</td>
<td>H₂O (Ice)</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>NF₁,NF₂</td>
<td>Si(CH₃)₄</td>
<td></td>
<td>H₂O (Liquid)</td>
</tr>
<tr>
<td></td>
<td>N₂O</td>
<td>NF₃</td>
<td>SiN</td>
<td></td>
<td>CH₄ (Ice)</td>
</tr>
<tr>
<td></td>
<td>NO₂</td>
<td>SF₁</td>
<td>SiS</td>
<td></td>
<td>Diamond</td>
</tr>
<tr>
<td></td>
<td>NO₃</td>
<td>SF₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N₂O₅</td>
<td>SF₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H₂O (Free)</td>
<td>SF₄</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF₅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SF₆</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

e - H₂O

Q_{\text{ion}}

Present \Delta = IE

Present \Delta = IE+1

Kim

Starub

Prsent \Sigma Q_{\text{exc}}
The diagram shows the total cross sections for electron-NO$_2$ interactions as a function of electronic energy (E_i). The graph plots the cross sections in Angstrom2 (\AA^2) on the y-axis against the electronic energy (E_i) in electron volts (eV) on the x-axis.

The different sets of data are represented by various symbols and lines:
- Q_T: Present
- Q_{el}: Present
- Q_{ion}: Present
- Zecca
- Szmytkowski
- Kim
- Lindsay
- Lopez
- Lukic

Each set of data is distinguished by a different color and symbol, allowing for a clear comparison of the cross sections across different models and data sets.
Summary & Conclusions

- The present calculations that the SCOP along with CSP-ic method is a useful theoretical tool for determining all the major cross sections within the framework of a common general formulation.

- The well known Complex Optical Method formalism is modified by us to include single & multi-centre molecules using the ‘single centre’ and ‘group additivity methods’.

- Under the same umbrella of the present method, we are capable of producing reliable various total cross sections for targets from small atoms to complex polyatomic molecules.

- We have successfully done a first initiation to obtain Q_{ion} from Q_{inel} using our method called CSP-ic.

- Results on most of the targets studied shows satisfactory agreement with the previous investigations where ever available.
Merits & Demerits

Merits of the theory:

- Quantum mechanical approach
- Calculating different CS under the same formalism
- Can investigate large/reactive molecules
- Simple and fast method
- First initiation to extract Q_{ion} from Q_{inel}

Limitations of the theory:

- Spherical approximation
- Lower energy limit
- Semi-empirical method to find Q_{ion}
Recent publications

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>H₂O (Ice) and H₂O (Liquid)</td>
<td>J. Phys: Conf. Series 80 (2007) 012008</td>
<td>K N Joshipura, Sumona Gangopadhyay, CGL and MV</td>
</tr>
</tbody>
</table>
Thank you

Prof. K N Joshipura
Minaxi Mam, Bobby, Chetanbhai, Bhushitbhai
Prof. P C Vinodkumar
Foram Shelat, Harshit Kothari, Pooja Bhowmik, Manisha
&
My Friends

Department of Physics,
Sardar Patel University,
Vallabhbh Vidyanagar 388 120, Gujarat, INDIA