Modelling Erosion and Redeposition on Plasma Facing Walls: Basics and Recent Progress

(I) Modelling basics of erosion and redeposition

Kaoru Ohya

Institute of Technology and Science, The University of Tokushima, Japan
Outline of lecture

(A) INTRODUCTION

A-1) Related issues to plasma wall interaction in fusion devices
A-2) Erosion and redeposition on plasma facing walls

(B) BASIC PROCESSES

B-1) Projectile reflection and physical sputtering
B-2) Chemical sputtering and hydrocarbon emission
B-3) Impurity deposition and material mixing
B-4) Thermal diffusion of impurities in materials
B-5) Transport and redeposition of eroded impurities
(1) Erosion of wall elements

Reduced life time of wall elements

(2) Eroded impurities can penetrate into the plasma

Dilution and radiation cooling of core plasma

(3) Redeposition of eroded particles

Tritium retention in redeposited layers

Erosion, transport and redeposition of impurities is a crucial issue in fusion devices!
Global and Local PWIs related to Tritium

Global transport of impurities
Codeposition with C and Be

Local collision and thermal processes:
Implantation, diffusion, trapping/detrapping and surface recombination

Global and Local PWIs related to Tritium
A-2) Erosion and redeposition on plasma facing walls

Carbon based materials for PFW

Key issues:
Physical/Chemical sputtering & Tritium incorporation

Impurity transport codes require to treat self-consistently:

I) Physical and chemical erosion of surface

II) Transport of released impurities above surface

III) Redeposition of returning impurities and re-erosion of redeposited impurities on surface

IV) Resultant material mixing below surface
A-2) Erosion and redeposition on plasma facing walls

Models and assumptions

Erosion
- Physical sputtering
 - Yield
 - Energy
 - Angle
 - TRIM database
 - Thompson Cosine

Chemical erosion
- Yield
- Energy
- Angle
- Roth formula or Input
- Thermal
- Isotropic or cosine

Transport
- Ionization (atoms)
- ADAS database
- Ionization/dissociation (molecules)
 - Janev/Reiter data set for methane, ethane and propane families

Redeposition
- Reflection/Sticking (atoms)
 - TRIM database
- Reflection/Sticking (molecules)
 - Input

Material mixing

Coupling codes

- Static/dynamic BCA codes
- Magnetic, sheath, friction, thermal, cross-field diffusion, elastic collisions, Radial electric field
- Molecular Dynamics codes or Database by MD
- Dynamic BCA codes
B-1) Projectile reflection and physical sputtering

Binary Collision Approximation (BCA)

Vacuum

Sputtered atom

\[\Delta E_{el}(\theta_1) - E_{sb} \]

Solid

Recoiled atom

\[\Delta E_{el}(\theta_2) \]

Projectile ion

\[E_0 \]

\[L_1 = -\ln \lambda(E_0) \]

\[E_1 = E_0 - \Delta E_{inel}(L_1) - \Delta E_{el}(\theta_1) \]

\[L_2 = -\ln \lambda(E_1) \]

\[E_2 = E_1 - \Delta E_{inel}(L_2) - \Delta E_{el}(\theta_2) \]

Analytic formula for scattering angle:

\[\cos \frac{\theta}{2} = \frac{b + \rho + \Delta}{\xi_c + \rho} \]

Stopping power:

\[(dE / dx)_{nonlocal} = 1.212 \frac{Z_a^{7/6} Z_b}{\left(Z_a^{2/3} + Z_b^{2/3}\right)^{3/2}} \sqrt{E} \quad [eV \cdot A^2] \]

Energy of sputtered atoms:

\[E = E' - E_{sb} \]

Emission angle of Sputtered atoms:

\[\cos \beta = \sqrt{\frac{E' \cos^2 \beta' - E_s}{E' - E_s}} \]

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012
B-2) Chemical sputtering and hydrocarbon emission

Hydrogen ion penetrates into carbon and forms hydrocarbon after thermalization, which diffuses to surface and desorbs.

Formalization by J. Roth [JNM266-269(1999)51]:

\[
Y_{\text{chem}}(E,T,\phi) = \frac{Y_{\text{low}}(E,T)}{1 + \left(\frac{\phi}{6 \times 10^{21}}\right)^{0.54}}
\]

\[
Y_{\text{low}} = Y_{\text{therm}}(1 + D Y_{\text{dam}}) + Y_{\text{surf}}
\]

- \(Y_{\text{therm}}\): chemical erosion by thermalized ions
- \(Y_{\text{dam}}\): enhancement of thermal erosion by radiation damage
- \(Y_{\text{surf}}\): ion induced desorption of hydrocarbon radicals

Sputtering yield strongly depends on surface temperature (\(T\)) and energy (\(E\)) and ion flux (\(\phi\)) of bombarding ions.
Differential Fluence: \(\Delta \Phi = \Phi / N_H \) (\(\Phi \): Total fluence, \(N_H \): Number of pseudo ions)

Surface Thickness: \(d = \sum_{i=1}^{N} \Delta x_i \) (\(N \): Number of layers, \(\Delta x_i \): \(i \)-th Layer thickness)

Collision process of a pseudo Ion:

Reflection, Implantation, Physical Sputtering

After simulation of collision process:

- Areal density of \(j \)-th atom in \(i \)-th layer:
 \[
 A_{ij} = q_j n_i \Delta x_i + \Delta N_{ij} \Delta \Phi
 \]
 (\(\Delta N_{ij} \): Change in number of \(j \)-th atom in \(i \)-th layer)

- \(i \)-th layer thickness:
 \[
 \Delta x_i = \sum_{j=1}^{N_c} A_{ij} n_{0,j}^{-1}
 \]
 (\(n_{0,j} \): \(j \)-th atom density)

- \(j \)-th atom constituent in \(i \)-th layer:
 \[
 q_{ij} = A_{ij} / \sum_{k=1}^{N_c} A_{ik}
 \]

- Maximum areal density of 1st atom in \(i \)-th layer:
 \[
 A_{i1}^{\text{max}} = \left[q_{11}^{\text{max}} / \left(1 - q_{11}^{\text{max}} \right) \right] \sum_{j=2}^{N_c} A_{ij}
 \]

- Reemission:
 \[
 \Delta A_{i1}^{\text{reem}} = A_{i1} - A_{i1}^{\text{max}}
 \]

- Saturation:
 \[
 A_{i1} = A_{i1}^{\text{max}}
 \]

\[A_{i1} > A_{i1}^{\text{max}} \]
Dynamic erosion/deposition due to W-C mixing

Depending on C concentration and temperature of plasmas, transition between erosion and deposition occurs at W surface during plasma exposure.

Dynamic BCA codes reproduce a sharp boundary between erosion and C deposition area observed on high-Z material surfaces.

B-4) Thermal diffusion of impurities in materials

★ Impurity Deposition and Collisional Mixing

★ Thermal Diffusion of Deposited Impurities

\[\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial^2 x} \]

Diffusion Coefficient

\[D = D_0 \exp\left(\frac{-Q_D}{kT}\right) \]

- \(D_0 \): Material Constant (cm²s⁻¹)
- \(Q_D \): Activation Energy (eV)
- \(T \): Material Temperature (K)

\[\Gamma \]: Incident Ion Flux (cm²s⁻¹)
\[\phi \]: Total Ion Fluence (cm²)
\[t \]: \((\phi / \Gamma) \) Irradiation Time (s)

\[N \]: Number of Pseudo Ions
\[\Delta \phi \]: \((\phi / N) \) Differential Ion Flux (cm²)
\[\Delta t \]: \((t / N) \) Differential Irradiation time (s)

B-4) Thermal diffusion of impurities in materials

Coupling of BCA code with diffusion codes

Fick’s law with source and trapping terms

\[\frac{\partial c_j(x,t)}{\partial t} = \nabla [D_j \nabla c_j(x,t)] + G_j(x,t_0) - \sum_{i=1}^{n} \frac{\partial c_{Tj}^i(x,t)}{\partial t} \]

- \(c_j(x,t) \) : jth solute concentration,
- \(D_j \) : Diffusion coefficient for jth solute
- \(G_j(x,t_0) \) : source term (range profile)
- \(c_{Tj}^i(x,t) \) : concentration of jth solute trapped Ith trapping site

Rate equation for trapping and detrapping

\[\frac{\partial c_{Tj}^i(x,t)}{\partial t} = \frac{D_j c_j(x,t) C_{Te}^i(x,t)}{\lambda^2} - c_{Tj}^i(x,t) \nu_0 \exp(-E_T^i / kT) \]

- \(\lambda \) : jump distance,
- \(\nu_0 \) : detrapping attempt frequency
- \(f_j^i \) : the inverse trap saturability of jth solute for the Ith trapping site
- \(E_T^i \) : detrapping energy of Ith trap

Boundary condition

e.g., recombination limited

\[\frac{\partial c_j}{\partial x} = \frac{K_r}{D_j} c_j^2(x = 0) \]

- \(K_r \) : recombination coefficient

Parameters

<table>
<thead>
<tr>
<th>Diffusion</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_0) (cm(^2)/s)</td>
<td>(3.5 \times 10^{-7})</td>
</tr>
<tr>
<td>(E_D) (eV)</td>
<td>0.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recombination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_0) (cm(^4)K(^{-1/2})/s)</td>
<td>(1.2 \times 10^{25})</td>
</tr>
<tr>
<td>(E_R) (eV)</td>
<td>-0.59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trap #1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{T,1}) (eV)</td>
<td>0.85</td>
</tr>
<tr>
<td>(C_{T,1}) (Traps/W)</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trap #2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{T,2}) (eV)</td>
<td>1.4</td>
</tr>
<tr>
<td>(C_{T,2}) (Traps/W)</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Monte Carlo Modeling of Impurity Transport

The released C_xH_y molecule successively collides with plasma electrons and ions.

More than 700 reactions are included.

The elastic collisions with the residual neutral hydrogen atoms.
The model includes

- **Lorenz force** \(F_z = q(v \times B) \)
- **friction force** and **temperature gradient thermal force**

\[
F_z = m_z \left(\frac{v_i - v_z}{\tau_s} + \alpha_e \frac{d(kT_e)}{ds} + \beta_i \frac{d(kT_i)}{ds} \right)
\]

- **Debye sheath and magnetic pre-sheath potential**

\[
\phi(z) = \phi_1 \exp\left(-\frac{z}{2\lambda_{Debye}}\right) + (\phi_0 - \phi_1)\exp\left(-\frac{z}{R_{gyro}}\right)
\]

\[
f_D = 1 - \phi(6\lambda_{Debye}) / \phi_0 \approx 0.25
\]

- **Cross-field diffusion**

\[
(\Delta x, \Delta y) = \sqrt{2D_\perp \Delta t} \bullet (r_{Gx}, r_{Gy}) \quad D_\perp = 1 \text{ [m}^2/\text{s]}
\]

: K. Shimizu, T. Takizuka
purakakugakkaishi 71 (1995) 1135.
B-5) Transport and redeposition of eroded impurities

Hydrocarbon Redeposition on PFW Surfaces

- Ion species dominate at high temperature
- Neutral species dominate at low temperature

⇒Strong influence of atomic and molecular processes

Inverse photon efficiency, \(D/XB \), defined as
\[
\frac{\text{the number of the launching hydrocarbons}}{\text{the number of photon emission events}}
\]

Correlation of \(\text{CH} \left(\text{C}_2 \right) \) radiations with chemically sputtered \(\text{CH}_4 \)
\((\text{C}_2\text{H}_4, \text{C}_2\text{H}_6) \) are important, depending on plasma parameters and hydrocarbon species.

D/XB of \(\text{CH} \) and \(\text{C}_2 \) decreases with decreasing temperature up to 5 eV, and then increases with a further decrease of temperature.
B-5) Transport and redeposition of eroded impurities

TEXTOR tokamak

W-C twin test limiter in TEXTOR

Top surface = sphere (r=7cm)

WI light emission appears on C-side!

CII light distribution in near-surface plasma

W deposition on the C side strongly decrease CII light intensity above the surface.

"Suppression" of chemical sputtering due to W deposition
Many assumptions:
- 0.1% Be to outer, 1% Be to inner divertor
- plasma parameter from a plasma code, B2-Eirene
- zero sticking of CₓHᵧ (S = 0), Trim/MolDyn for atoms
- enhanced erosion of redeposited carbon
- Variable (T+D)/C and (T+D)/Be ratios for deposits,
 \[D/C = 0.0204 \cdot 10^{-0.43} \cdot \exp(2268/T) \]
 \[D/Be = 5.82 \cdot 10^{-5} \cdot E^{1.17} \cdot (D/Be)_{flux}^{-0.21} \exp(2273/T) \]
 and (T+D)/C = (T+D)/Be = 1 for remote deposits.
- Temperature distribution on target calculated,
summarizes of lecture

(I) “Erosion/deposition” on plasma facing walls in fusion devices is a critical issue related to
 (a) transport of impurities in plasma boundary,
 (b) lifetime of plasma-facing components and
 (c) tritium retention in plasma-facing components.

(II) Modelling codes of “erosion/deposition” require to treat self-consistently:
 (a) Physical and chemical erosion of surface,
 (b) Transport of released impurities above surface,
 (c) Redeposition of returning impurities and re-erosion of redeposited impurities on surface, and
 (d) Resultant material mixing below surface

(III) Models and assumptions in the codes have to be evaluated in cross-code and code-experiment benchmarking,
 whereas reliable database of physical parameters used in codes have to be prepared.
(VI) Integration of “erosion/deposition” codes with plasma and material codes is an urgent issue for understanding of plasma wall interactions in fusion devices in more realistic in-vessel geometry.
Integrated simulation for in-vessel retention of tritium

Research project:
Theory and code development for evaluation of tritium retention and exhaust in fusion reactor

TOPICS, TASK

Transport
Erosion
Re-erosion
Reflection
Re-deposition

Coupling with core plasma

Coupling with edge plasma

Coupling with impurity transport

Coupling with wall

MD simulation

SOLPS
IMPGYRO
IMPMC
EDDY
SOLDOR

Joint ICTP-IAEA Workshop on Fusion Plasma Modelling Using Atomic and Molecular Data, Trieste, Italy, 23-27 January 2012

Integrated simulation for in-vessel retention of tritium