Modelling the electronic excitation induced structural dynamics of tungsten

Sam Murphy, Yvelin Giret, Szymon Daraszewicz, Alex Shluger

Dorothy Duffy

University College London
Overview

• Background/Motivation

• High temperature DFT calculations
 • Soft phonon modes
 • Solid to solid phase transitions

• Electronic temperature dependent interatomic potentials

• Large scale MD simulations
 • Laser irradiation of W thin films
Motivation: *To include the effects of excited electrons in radiation damage simulations*

Radiation that interacts primarily with nuclei:
- Neutron irradiation
- Low energy ion irradiation

Radiation that interacts primarily with nuclei:
- Swift heavy ion irradiation
- Laser irradiation
2T-MD

- 2T model with thermal diffusion equation of lattice replaced by MD
- Lattice is thermostatted to the local electronic temperature

\[m_i \frac{\partial v_i}{\partial t} = F_i - \gamma v_i + \tilde{F} \]

\[C_e \frac{\partial T_e}{\partial t} = \nabla \kappa \nabla T_e - g_p (T_e - T_a) \]

- Thermal diffusion equation solved by FD technique
- Energy is exchanged between lattice and electrons at each MD step
- *Temporal and spatial* \(T_e \) *evolution is known throughout simulation*
2T-MD - Cascades

50 keV Fe cascades

- residual defect number very sensitive treatment of electronic loss
2T-MD – Laser irradiation

• Successful modelling/experimental project on Au nanofilms
 • Ultrafast electron diffraction (UED) of laser irradiated single crystal 10 nm gold films
 • 2T-MD modelling on same length and time scales
 • Exceptional agreement between calculated and measured time evolution of the Bragg peak intensities
 • **No adjustable parameters**

• Follow-on project on W
 • Calculated and measured e-p coupling constant 1.65×10^{17} vs $1.4(3) \times 10^{17}$ W m$^{-3}$ K$^{-1}$
 • Noted soft modes at high electronic temperature

PRB 184101 (2013)
APL103, 253107(2013)

APL105, 023112 (2014)
W Phonon dispersion – high Te

bcc

\[Te = 300K ; 20000K \]

fcc

\[Te = 300K ; 20000K \]

bcc 300 K – comparison with expt.

fcc

\[Te = 300K ; 20000K \]
bcc to fcc/hcp

Is there a barrier?

Tetragonal Bain path

Hexagonal path

Trigonal Bain path
Electron density - redistribution

Electron density difference between $T_e = 20,000$ K and $T_e = 300$ K
Solid to solid phase transitions - Summary

- $10000 K < T_e < 15000 K$
 - Strong directional softening of bcc but no instability
 - Free energy barrier for transformation
 - Both fcc and hcp are stable
 - Free energy of fcc and hcp are lower than bcc

- $T_e > 15000 K$
 - bcc structure becomes dynamically unstable
 - No free energy barrier for tetragonal Bain transformation from bcc to fcc or hexagonal transformation from bcc to hcp

- Redistribution of electron density
 - Increase in density along 2nd neighbour bonds
T_e dependent interatomic potentials

• Aims
 • To derive a set of interatomic potentials that reflect the change in the interactions resulting from electronic excitations

 • To use the potentials, in conjunction with 2T-MD, to perform large scale simulations of:
 • Laser irradiation
 • Swift heavy ion irradiation
 • Neutron irradiation
T_e dependent potentials - strategy

- Use DFT to calculate free energy of bcc and fcc W as a function of lattice parameter for a range of T_e

- EAM potential
 - Extended FS for ground state potential (Dai et al, JPCM 2006)
 - Normalize DFT free energies to give 0 at Dai potential cutoff
 - Subtract Dai repulsive $V(r_{ij})$ energy from DFT energies
 - Convert volume to density using Dai expression for density
 - Use cubic spline to fit embedding term to DFT data (100% bcc or 50% bcc / 50% fcc)

- Summary
 - Repulsive term and form of density unchanged
 - $F(\rho_i) \rightarrow F(\rho_i, T_e)$ - embedding term to fit calculated HTDFT data
T_e dependent potentials - results

Fitted to bcc

Fitted to 50/50 bcc/fcc
2T-MD Simulations with T_e dependent potentials

- Electronic heat conductivity considered as infinite
- T_e dependent C_e and e-p coupling evaluated from \textit{ab initio} calculations
- PES changes included by Te dependent potentials

\[C_e(T_e) \frac{\partial T_e}{\partial t} = \nabla \cdot (\kappa_e \nabla T_e) - G(T_e) \cdot (T_e - T_i) + S(z, t) \]

\[m \frac{\partial v_i}{\partial t} = F_i(t) - \gamma_i v_i + \tilde{F}_i(t) \]

\[\tilde{F}_i(t) = \sqrt{\tau} \tilde{A}_i(t) \]
2T-MD simulation results: 40 mJ cm$^{-2}$ fluence

- 50x50x50 bcc unit cell simulation cell
- Periodic in x and y
- 800 fs laser homogeneous pulse
- Gaussian time distribution

- Blue – bcc
- Grey - disordered
2T-MD simulation results: 40 mJ cm$^{-2}$ fluence
2T-MD Simulations - 80 mJ cm$^{-2}$ fluence

- *Blue* – bcc
- *Green* – fcc
- *Red* - hcp
- *Grey* - disordered

Only showing fcc and hcp

0.4 ps
0.6 ps
2T-MD Simulations - 80 mJ cm\(^{-2}\) fluence

Artificially low e-p coupling
- Blue – bcc
- Green - fcc
- Grey - disordered

1.2 ps
Summary

- High temperature DFT calculations find:
 - Soft modes in bcc W for Te > 10000 K
 - fcc and hcp both stable
 - Dynamic lattice instabilities for Te > 15000 K
 - No barrier for tetragonal Bain transformation

- Derived T_e dependent potentials by fitting to HTDFT results
- Used to model laser irradiation of thin film W
- Observe bcc to fcc transformation for very low e-p coupling
 - *Non-thermal solid to solid phase transformation*
Discussion questions

- How should we treat electronic energy loss in cascades?

- How high would you expect T_e to be in a plasma facing W?
 - Irradiation with n, e, α, tritium
 - 10^4 K for 300 keV cascades (Eva Zarkadoula et al to be published)

- Does HTDFT give a good description of interactions between excited atoms?
Acknowledgements

People
Sascha Khakshouri
Prof Tanimura (Osaka University)

Funding
Leverhulme trust
Grant-in-Aid for Scientific Research from the JSPS, Japan.
CCFE

Computing
UK’s HPC Materials Chemistry Consortium via EPSRC
UCL Legion High Performance Computing Facility.