PERIODIC STRUCTURES FORMATION ON BERYLLIUM, CARBON, TUNGSTEN MIXED FILMS BY TW LASER IRRADIATION

C. P. LUNGU¹, C. M. TICOS¹, C. POROSNICU¹, I. JEPU¹, M. LUNGU¹, P. DINCA¹, O. POMPILIAN¹, D. URSESCU¹, R. BANICI¹, G. COJOCARU¹, R. UNGUREANU¹, C. LUCULESCU¹, A. MARCU¹, R. VLADOIU², A. MARIN³, I. FERARU⁴, C. GRIGORESCU⁴

¹National Institute for Lasers, Plasma and Radiation Physics, Magurele, jud Ilfov, Romania
²”Ovidius” University, Constanta, Romania
³“Ilie Murgulescu” Institute of Physical Chemistry, Bucharest, Romania
⁴National Institute R&D for Optoelectronics INOE 2000, Bucharest, Romania
Outline

- **Experiments**: Film preparation and laser irradiation
 - Devices and setup
 - Direct laser-matter interaction
 - Indirect laser-matter interaction
- **Results and discussions**
 - Morphology
 - Structural changes
- **Conclusions**
Experiments: Sample Preparation - TVA Method-

TVA evaporator and plasma running in pure Be vapors
TVA Systems

Licensed laboratory to work with beryllium and beryllium containing composites

Vacuum deposition systems:
- stainless steel chambers,
- glass, quartz and germanium windows;
- volumes; 250 l, 1000 l
- base pressure; 6*10^{-7} torr
- mechanical pump (60; 250 m3/h)
- buster pump (200; 500 m3/h),
- diffusion pump (3000; 8000 l/s)
Laser Facilities - Magurele

<table>
<thead>
<tr>
<th>ELI-NP</th>
<th>CETAL</th>
<th>TEWALAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>High power laser system, - Power 2 x 10 PW</td>
<td>High power laser system - Power 1 PW, - Pulse width 100 fs - Wavelength 800 nm - Rep. Rate 0.1 Hz (1PW)</td>
<td>High power laser system - Power 15 TW - Pulse width 25 fs - Wavelength 800 nm - Rep. Rate 10 Hz</td>
</tr>
<tr>
<td>- Gamma beam, high intensity, up to 20 MeV, produced by Compton scattering of a laser beam on a 700 MeV electron beam produced by a warm LINAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provided by THALES - France
Laser Facilities - Magurele

ELI-NP

- High power laser system, 2 x 10PW maximum power
- Gamma beam, high intensity, up to 20MeV, produced by Compton scattering of a laser beam on a 700 MeV electron beam produced by a warm LINAC

Provided by THALES - France

- 2 x 0.1 PW
- 2 x 1 PW
- 2 x 10 PW
ELI-NP

- High power laser system, 2 x 10 PW maximum power

- Gamma beam, high intensity, up to 20 MeV, produced by Compton scattering of a laser beam on a 700 MeV electron beam produced by a warm LINAC

Provided by THALES - France

2 x 0.1 PW
2 x 1 PW
2 x 10 PW
CETAL

High power laser system
- Power 1 PW,
- Pulse width 100 fs
- Wavelength 800 nm
- Rep. Rate 0.1 Hz (1PW)
TEWALS - Laser facility -

- Stretcher + Dazzler
- Booster & Contrast improvement
- FEMTOLASERS Oscillator
- Optical table
- GENPULSE
- Vacuum compressor
- MP 2
- Regenerative amplifier + Mazzler, MP 1
- Interaction chamber
Interaction Chamber
Experimental Setup
- Direct laser irradiation -
Experimental Setup
- Direct laser irradiation -

SEM image of the Sample traces

Laser spot

Laser

Beam

Lens

Target

Carbon

Graphite

Tungsten

2 mm scale

~ 150 μm
Experimental Setup

- Indirect laser irradiation -

Experimental Setup scheme

SEM image of the Sample traces
Results: Sample Roughness - before irradiation-

The AFM analyses highlighted the formation of very smooth films of carbon (Ra: 1.68 nm), smooth films of W (Ra: 9.28 nm) and rough films of Be (Ra: 72.26 nm). Due to the specific growth of Be films, the 2D growth planes are obvious.

3D AFM images: C film, Ra: 1.7 nm (a), W film, Ra: 9.3 nm (b) and Be film, Ra: 72.3 nm (c)
Direct Laser Ablation of Be
- Morphology -

10 Pulses

100 Pulses

SEM Image of the Be irradiated area after 10 Pulses and 100 Pulses
Direct Laser Ablation of W - Morphology -

SEM Image of the W irradiated area after 1 Pulse, 10 Pulses and 100 Pulses
Direct Laser Ablation of Carbon(/Tungsten)
- Morphology -

SEM Image of the target surface in the center of the irradiated area

SEM Details of central irradiated area surface (SEM)
Direct Laser Ablation of **Carbon** - Diamond formation -

There are morphological signs of possible material nucleation and recrystallization.

Accidental diamond signals on Synchrotron XRD
Direct Laser Ablation of Carbon/Tungsten - Raman -

Variation of the 'D' peak integrate intensity
Longitudinal variations on the 1, 3 and 5 pulses irradiated zones

Raman analysis on the zones irradiated directly with 1, 3, 10, 30 and 100 pulses

2D mapping on the edge of 3 pulses irradiated zone.
Indirect Laser Irradiation – Air - morphology -

The pulse duration was 70 fs at energy of 6mJ and 10 Hz repetition rate.

The laser beam was focused by a 300 mm parabolic mirror. The diameter of the focus point was about 200 mm leading to a laser fluence of 19.1 J/cm².

SEM images of: films irradiated with: 1000; 300; 100; 30 and 1 pulses (a), film irradiated with 1000 pulses (b), film irradiated with 300 pulses (c).
Indirect Laser Irradiation – Air - morphology -

The pulse duration was 70 fs at energy of 6mJ and 10 Hz repetition rate.

The laser beam was focused by a 300 mm parabolic mirror. The diameter of the focus point was about 200 mm leading to a laser fluence of 19.1 J/cm².

Clear evidence of striation formation by an indirect irradiation produced by a femtosecond type laser

SEM images of: films irradiated with: 1000; 300; 100; 30 and 1 pulses (a), film irradiated with 1000 pulses (b), film irradiated with 300 pulses (c).
Indirect Laser Irradiation – Be-W

The mechanism for surface striations can be explained as the result of interference between the incident laser beam and the surface plasmons although neither Be and nor W have the real part of the dielectric permittivity negative

Other factors such as surface roughness and transfer of heat from the plasma to the surface during the ripple formation have to be accounted for.

Exposed samples made of Be-W mixture in air in (a) to (f) and in deuterium in (g) to (l), after 1, 10, 30, 100, 300 and 1000 shots, respectively
Indirect Laser Irradiation – D - Be and W -

The morphology of the analyzed striations is similar to that observed in experiments which used a laser beam incident on a W target [1-3]

Exposed Be samples in (a) to (f) and W samples in (g) to (l) in D at 20 Torr after 1, 10, 30, 100, 300, and 1000 shots, respectively
Vorobyev and Guo [1] reported a period $\Lambda = 289$ nm in air at $\lambda = 400$ nm and a fluence of 0.35 J/cm2, while at $\lambda = 800$ nm the period depended on the number of laser shots: $\Lambda = 560$ after 40 shots and 470 nm after 800 shots, respectively, at a fluence of 0.44 J/cm2, concluding that $\Lambda > \sim \lambda/2$.

In our case the laser beam does not hit the sample surface and the measured period is in the range $\Lambda = 290$ nm to 400 nm for both W and Be, thus $\Lambda < \sim \lambda/2$.

On the other hand, ripples with periodicity $\Lambda = 30$ to 100 nm $\ll \lambda = 800$ nm were observed for a higher fluence of 3 J/cm2 and after 10 shots [4].

Exposed Be samples in (a) to (f) and W samples in (g) to (l) in D at 20 Torr after 1, 10, 30, 100, 300, and 1000 shots, respectively
Center: A close inspection of the deconvoluted spectra exhibit that the sp3 component shows a tendency of increasing with the sputtering time (i.e., with sampling depth) from 11.5% (1 min Ar etching) to 13.6% (5 min Ar etching). This behavior is accompanied by the corresponding decrease of the sp2 feature from 68.0% (1 min Ar etching) to 65.1% (5 min Ar etching). Our estimations for depth profiling are, as follows: 1 min sputtering ~10 nm; 2 min sputtering ~12.5 nm; 5 min sputtering ~22 nm. The noisy O1s XPS spectra suggest a small amount of oxygen incorporated into the sample matrix. After 5 min sputtering we notice that a tiny amount of oxygen is still dissolved into the sample’s matrix.

Periphery: A weak cumulative tendency could be assumed for few nm thick layers.
The Be1s band-like XPS spectra were recorded under the circumstances labeled on the spectra (after 1, 2 and 5 min Ar etching time). The spectra clearly display a mixture of metallic and oxide Beryllium with the metallic feature increasing with the sampling depth as a result of diminishing the amount of oxygen.
The W 4f XPS spectra exhibit only the oxide layer on the outermost layer of the sample. By etching the sample the depth characteristic W 4f doublet of metallic tungsten shows a major oxide component still remaining.
Conclusions
- Structures -

The laser fluency threshold for a complete removal of a 1.5 μm carbon layer from several laser pulses is estimated around 1.7 J/cm² which is about 5 times higher than the carbon ablation threshold with a femtosecond laser beam.

At direct irradiation, tungsten cracks, melts and eventually evaporation could still be produced for a higher number of laser pulses.

While higher laser fluency could lead to diamond crystal formation in the graphite surface, at values between 0.2-0.5 mJ/cm², i.e. around the carbon ablation threshold could still produce an increase of the sp³ bonds percentage at the expenses of the sp² bonds.

Only a decrease of oxygen content could be noticed by in depth XPS investigations for Be and W, while a weak cumulative effect through the increase of the sp³ percent could be assumed for the carbon (direct) irradiation.
Conclusions
- Morphology -

Striations were observed on the surface of samples made of Be, W and a mixture of Be-W immersed in air at atmospheric pressure and in deuterium at 20 torr after exposure to plasma created by focusing a high power ultrashort laser pulses within the nearby gas, at 300 µm from the surfaces.

The morphology of the surface structures is similar to that observed in experiments with direct laser irradiation of the surfaces.

For a coating made of Be-W, the striations were localized within areas of 1 to 2 µm well delimited from each other. This observation could be of interest for the creation of surfaces with variable morphology at the micron level in which periodic structures alternate with regions with no particular structuring.