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Outline

Atomic Structure Calculations with the General Relativistic Atomic
Structure Package (Grasp2K) based on the multiconfiguration
method

� Fundamental concepts and examples (this lecture)

� Introduction to calculations with Grasp2K (tomorrow)

� Lab work with Grasp2K (tomorrow), documentation and
extensive manual available
http://webshare.mah.se/tsjoek/ictp/
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Relativistic multiconfiguration methods

Relativistic multiconfiguration methods

� Conceptually easy

� Can be generally applied; complex shell structures

� Can be used to generate massive data sets

� Allows for systematic calculations giving uncertainty estimates
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General references

� C. Froese-Fischer, T. Brage, P. Jönsson
Computational Atomic Structure: An MCHF Approach
IoP 1997

� I. Grant
Relativistic Quantum Theory of Atoms and Molecules: Theory
and Computation
Springer 2007

� The CompAS group
A practical guide to Grasp2K, 2015
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Code and material from Compas page
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Electronic states in Be-like Fe in LSJ coupling

1s22s2 1S0

1s22s2p 3Po
0

1s22s2p 3Po
1

1s22s2p 3Po
2

1s22s2p 1Po
1

1s22p2 3P0

1s22p2 3P1

1s22p2 3P2

1s22p2 1D2

1s22p2 1S0

E (cm−1)

1 000 000

0

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts

Goal of calculations

The goal of calculations is to give:

� energies for hundreds of levels (states)

� labels and composition of states (jj- or LSJ coupling)

� rates or gf-values for E1, M1, E2, M2, .. transitions

� other quantities: gJ -factors, hfs, isotope shift

The goal is also to provide uncertainty estimates.

Reach spectroscopic accuracy, aid line identification in plasma
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Fundamentals

� A state of an N-electron atom is described by a wave function

Ψ (r1, .., rN)

ri are the space co-ordinates

� The wave function is a solution to the wave equation

HΨ(r1, .., rN) = EΨ(r1, .., rN) ,

H is the Hamiltonian operator and E the energy.

� From the wave functions properties can be computed

P = 〈Ψ(r1, .., rN) |P|Ψ(r1, .., rN)〉
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Fundamentals

In relativistic calculations the Dirac-Coulomb Hamiltonian is used

HDC =
N∑
i=1

(
c αi · pi + Vnuc(ri ) + βic

2
)
+

N∑
i>j

1

rij

α and β are 4×4 Dirac matrices, c is the speed of light

p ≡ −i∇ the electron momentum operator.

Vnuc(r) potential from extended nuclear charge distribution
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Fundamentals

Transverse photon (TP) effects should be added: magnetic
interactions and retardation effects

HTP = −
N∑
j>i

[
αi ·αj cos(ωij rij/c)

rij
+

(αi ·∇i )(αj ·∇j)
cos(ωij rij/c)− 1

ω2
ij rij/c

2

]

QED effects: self energy (SE), vacuum polarization (VP)

Total operator is called Dirac-Coulomb-Breit + QED

HDCB+QED = HDC +HTP +HSE +HVP
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Symmetries

The wave functions Ψ (r1, .., rN) have the following symmetries:

� antisymmetric (fermion system)

� parity: even or odd

� eigenfunction to angular momentum operators J2, Jz
� angular symmetry defined by JM quantum numbers

(M normally suppressed)

� labels given by symmetry (parity, J) and order-number within
symmetry
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Symmetry and order-number in practice
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Specification with symmetry and order-number
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Specification with symmetry and order-number
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Specification with symmetry and order-number
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Specification with symmetry and order-number
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Specification with symmetry and order-number
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One-electron systems: spin-orbitals

Wave functions (spin-orbitals)

Ψ(nlsjm; r) =
1

r

(
P(nlj ; r) Ωlsjm(θ, ϕ)
i Q(nlj ; r) Ωl̃ sjm(θ, ϕ)

)

P(r), Q(r) radial functions represented on a grid ri , i = 1, 2, ..,M

P(r), Q(r) large and small component: |P(r)| >> |Q(r)|
Ωlsjm(θ, ϕ) spherical two-spinors

Ωlsjm(θ, ϕ) =
∑
mlms

〈lml
1

2
ms |jm〉 Ylml

(θ, ϕ) χ
(1/2)
ms
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Spectroscopic notation of spin-orbitals

Mapping between spectroscopic notation and quantum numbers lsj

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2
s p- p d- d f - f g - g

l 0 1 1 2 2 3 3 4 4
j 1/2 1/2 3/2 3/2 5/2 5/2 7/2 7/2 9/2
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Numerical solution of one-electron systems

� Apply variational principle on the energy functional

E(Ψ) = 〈Ψ(nlsjm; r)|HDC |Ψ(nlsjm; r)〉
� Radial and angular parts separate

� Coupled equations for P(nlj ; r), Q(nlj ; r), solved on the grid.

� Infinite number of solutions for a given symmetry.

� Correct solution enforced by node counting.

� Solution is essentially exact
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Node structure of orbitals

Number of nodes ν of P(nlj ; r) given by

ν = n − l − 1
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Many-electron systems: atomic state functions

� Electronic state given by an atomic state function Ψ(ΓJM)
which is expanded in configuration state functions Φ(γαJM)

Ψ(ΓJM) =
NCSF∑
α=1

cαΦ(γαJM)

� The label Γ of the state is given by the label of the leading
configuration state function (CSF)

� The label can be transformed to LSJ coupling
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Many-electron systems: configuration state functions

Construction of CSFs:

� start from a configuration, i.e. distribution of nlj quantum
numbers

� create product functions of spin-orbitals with the same
distribution of nlj quantum numbers but different values of m

� antisymmetrize product functions

� couple (make linear combinations) to produce eigenfunctions
of J2, Jz .
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Example 1s22s22p2

Configuration 1s22s22p2: 6 CSFs (GRASP2K notation)

1s ( 2) 2s ( 2) 2p ( 2)

0

0+

1s ( 2) 2s ( 2) 2p-( 2)

0+

*

1s ( 2) 2s ( 2) 2p-( 1) 2p ( 1)

1/2 3/2

1+

*

1s ( 2) 2s ( 2) 2p ( 2)

2

2+

1s ( 2) 2s ( 2) 2p-( 1) 2p ( 1)

1/2 3/2

2+
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Numerical solution of many-electron systems

Determination of atomic state functions

Ψ(ΓjJjM) =

NCSFj∑
α=1

c jαΦ(γ
j
αJjM), j = 1, . . . ,Nstates

Denote the spin-orbitals needed for the construction of the CSFs
by P(a, r),Q(a, r),P(b, r),Q(b, r) etc
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Numerical solution of many-electron systems

Set up the energy functional

F =
Nstates∑
j=1

wj c
jTHjcj︸ ︷︷ ︸

Ej

+orthogonality constraints

cjT = (c j1, c
j
2, . . . , c

j
NCSF ) and Hj the Hamiltonian matrix

H j
αβ = 〈Φ(γjαJjM)|HDC |Φ(γjβJjM)〉

Integration over angles give matrix elements angular coefficients
times radial integrals

H j
αβ =

∑
ab

tαβjab I (a, b) +
∑

abcd ;k

vαβjabcd ;kR
k(ab, cd)
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Numerical solution of many-electron systems

Multiconfiguration-Dirac-Hartree Fock (MCDHF)

� Apply variational principle on the energy functional F
� Coupled equations for radial orbitals P(a, r), Q(a, r),

P(b, r), Q(b, r) etc solved on the grid.

� Correct solution enforced by node counting for orbitals
building dominating CSFs

� Energies for states and expansion coefficients for CSFs
obtained by diagonalizing the Hamiltonian matrix for each
symmetry

� Solve iteratively until radial orbitals and expansion coefficients
are converged
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Algorithm

Starting estimates P(a,r), Q(a,r), P(b,r), Q(b,r) etc

Until converged

compute angular coeff. and radial integrals

diagonalize Hamilton matrices to get energies and

expansion coefficients for CSFs

solve differential equations for P(a,r), Q(a,r),

P(b,r), Q(b,r) etc
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Numerical solution of many-electron systems

Relativistic Configuration Interaction (RCI)

� Use the radial orbitals P(a, r), Q(a, r), P(b, r), Q(b, r) etc
from the step above

� Add Breit and QED correction to the Dirac-Coulomb
Hamiltonian and determine energies for states and expansion
coefficients for the CSFs by diagonalizing the matrix for each
symmetry

� RCI much faster than MCDHF, larger CSF expansions can be
used
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Selection of CSFs

� Accuracy of wave function and computed results depends of
the CSF expansion and the radial orbitals

� The CSFs should be systematically enlarged and convergence
monitored

� Convergence pattern give uncertainty estimates

� CSF expansions can be targeted to improve wave functions in
different regions of space

� For transition energies and transition rates it is important to
improve the outer (valence) region

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts

Selection of CSFs

Selection of CSFs guided by Z -dependent perturbation theory
(applicable mainly on highly charged systems)

� Zero-order wave function; expansion over CSFs in the
complex, accounts for most important effects

� The complex; CSFs that can be formed from orbitals with the
same distribution of principal quantum numbers n.

� Instead of complex we use multireference (MR), same as
complex but includes CSFs from additional important
configurations

� Complex (MR) built from spectroscopic orbitals, orbitals with
the same node structure as hydrogenic orbitals.
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Example 1: 1s22s22p2 in Fe XXI

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts



Example 1: 2s22p2 in Fe XXI

Wave functions and energies for all the states belonging to
1s22s22p2. For simplicity we use a non-relativistic notation.

� The wave functions are expansions of CSFs in the complex

� Complex (or MR) consists of all CSFs that can be formed
from spin-orbitals belonging to the configurations

{1s22s22p2, 1s22p4}
� Number of CSFs in the complex:

J = 0, 4; J = 1, 2; J = 2, 4
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Example 1: 2s22p2 in Fe XXI

--------------------------------------------------

J P MCDHF RCI NIST

E (cm^-1)

--------------------------------------------------

0 + 0 0 0

1 + 76 694 74 013 73 851

2 + 123 846 118 176 117 354

2 + 253 498 246 848 244 561

0 + 373 489 369 200 371 980

--------------------------------------------------
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

Wave functions and energies for all states belonging to the even
configurations 2p63s2, 2p63p2.

� Wave functions are expansions of CSFs in the complex

� Complex (or MR) consists of all CSFs that can be formed
from spin-orbitals belonging to the configurations

{2p63s2, 2p63p2, 2p63d2, 2p63s3d}
� Number of CSFs in the complex:

J = 0, 5; J = 1, 3; J = 2, 7
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

Wave functions and energies for all states belonging to the odd
configuration 2p63s3p.

� Wave functions are expansions of CSFs in the complex

� Complex (or MR) consists of all CSFs that can be formed
from spin-orbitals belonging to the configurations

{2p63s3p, 2p63p3d}
� Number of CSFs in the complex:

J = 0, 2; J = 1, 5; J = 2, 5
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

----------------------------------------------------

J P MCDHF RCI NIST

E (cm^-1)

----------------------------------------------------

0 +

0 - 232 465 232 482 233 842

1 - 238 507 238 340 239 660

2 - 252 959 252 397 253 820

1 - 356 753 356 318 351 911

0 + 556 476 556 162 554 524

2 + 560 273 559 445 559 600

1 + 566 635 566 000 564 602

2 + 583 986 582 795 581 803

0 + 666 558 665 632 659 627

----------------------------------------------------
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Improving the wave functions

Zero-order wave functions can be improved by:

� generating configurations by single (S) and double (D)
substitutions of orbitals in the configurations in the complex
(or the MR) with orbitals in an active orbital set

� adding the CSFs from the generated configurations to the
CSFs in the complex

� systematically enlarging the active orbital set

� additional orbitals needed to build the correcting CSFs are
called correlation orbitals. No restriction on node structure.
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Different types of electron correlation

Often necessary to impose restrictions on the SD substitutions

� If SD substitutions are allowed only from the outer orbitals
the CSF expansion accounts for valence correlation

� If SD substitutions are allowed from the outer orbitals and in
addition at most S substitutions from the core, the CSF
expansions account for valence and core-valence correlation

� For most systems only valence and core-valence correlation
effects need to be considered
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Example 1: 2s22p2 in Fe XXI

Improve wave functions and energies by accounting for valence and
core-valence correlation.

� Complex (or MR): all CSFs belonging to
{1s22s22p2, 1s22p4}

� SD substitutions from the configurations in the complex to
orbitals in an active set, at most S substitutions from the 1s2

core. CSFs from the generated configurations

� Increase active orbital set layer by layer: {1s, 2s, 2p},
{1s, 2s, 2p, 3s, 3p, 3d}, {1s, 2s, 2p, 3s, 3p, 3d , 4s, 4p, 4d , 4f }
etc
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
S-substitution

1s22s22p3p
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution

1s22s23s2
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution

1s22s23p2
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution

1s22s23d2
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution

1s22s23s3d
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
S-substitution (D-substitution from 1s22p4)

1s22s2p23s
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
S-substitution (D-substitution from 1s22p4)

1s22s2p23d
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution

1s22s2p3s3p
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Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
S-substitution from 1s2 core

1s2s22p23s

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts

Example 1: 2s22p2 in Fe XXI

Configurations in the complex {1s22s22p2, 1s22p4}
Active orbital set {1s, 2s, 2p, 3s, 3p, 3d}
D-substitution, S substitution from 1s2 core and S substitution
from valence (account for core-valence correlation)

1s2s22p3s3p
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Example 1: 2s22p2 in Fe XXI

Number of CSFs as a function of the active orbital set

Complex 10

n = 3 980

n = 4 4 723

n = 5 12 771
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Example 1: 2s22p2 in Fe XXI

-----------------------------------------------------

J P MR n = 3 n = 4 n = 5 NIST

E (cm^-1)

-----------------------------------------------------

0 + 0 0 0 0 0

1 + 74 013 73 476 73 686 73 775 73 851

2 + 118 176 117 437 117 354 117 365 117 354

2 + 246 848 245 690 244 938 244 779 244 561

0 + 369 200 374 065 372 986 372 468 371 980

-----------------------------------------------------
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

Improve wave functions and energies by accounting for valence and
core-valence correlation. Separate calculations for even and odd
states.

� Complex (or MR): all CSFs belonging to
{2s22p63s2, 2s22p63p2, 2s22p63d2, 2s22p63s3d} and
{2s22p63s3p, 2s22p63p3d}

� SD substitutions from the configurations in the complex to
orbitals in an active set, at most S substitutions from the
2s22p6 core (1s2 is always closed). CSFs from the generated
configurations

� Increase the active orbital set layer by layer:
{1s, 2s, 2p, 3s, 3p, 3d}, {1s, 2s, 2p, 3s, 3p, 3d , 4s, 4p, 4d , 4f }
etc
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

Number of CSFs as a function of the active orbital set

even odd

Complex 15 12

n = 4 3 806 3 740

n = 5 13 833 13 474

n = 6 33 152 32 135
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Example 2: 2p63s2, 2p63s3p, 2p63p2 in Fe XV

--------------------------------------------------------

J P MR n = 4 n = 5 n = 6 NIST

E (cm^-1)

--------------------------------------------------------

0 +

0 - 232 482 233 503 233 590 233 691 233 842

1 - 238 340 239 352 239 433 239 531 239 660

2 - 252 397 253 504 253 578 253 680 253 820

1 - 356 318 353 122 352 765 352 411 351 911

0 + 556 162 554 574 554 464 554 479 554 524

2 + 559 445 559 685 559 653 559 696 559 600

1 + 566 000 564 539 564 449 564 490 564 602

2 + 582 795 581 786 581 701 581 748 581 803

0 + 665 632 662 392 661 461 660 793 659 627

--------------------------------------------------------
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Labeling of states

� Label of state is the same as the label for the dominating CSF.

� Labels in relativistic calculations given in jj-coupling

� Labels in jj-coupling unsuitable but can be transformed to
labels in LSJ-coupling
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Composition of J = 0 states in 2s22p2 in Fe XXI

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts

Example 1: 2s22p2 in Fe XXI

Composition and label of J = 0 states

Pos J Parity Energy Total Comp. of ASF

1 0 + -940.389925444 99.204%

0.89592391 1s(2).2s(2).2p(2)3P2_3P

0.09221480 1s(2).2s(2).2p(2)1S0_1S

0.00292347 1s(2).2p(4)1S0_1S

2 0 + -938.692836229 99.929%

0.87003632 1s(2).2s(2).2p(2)1S0_1S

0.09465318 1s(2).2s(2).2p(2)3P2_3P

0.03413268 1s(2).2p(4)1S0_1S
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Computation of properties

From the wave functions properties can be computed

P = 〈Ψ(ΓJM)|P|Ψ(ΓJM)〉

Inserting Ψ(ΓJM) =
∑NCSF

α=1 cαΦ(γαJM) and performing
integration over angles gives

P =
∑

α,β,a,b

cαcβt
αβ
ab I (a, b)

Dependent on the operator P properties may be important to
outer- or inner part of the wave function
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Computation of properties, Landé gJ factors

� The Landé gJ factor described by the operator

N∑
j=1

−i

√
2

2α
rj

(
αjC

(1)(j)
)(1)

� gJ dependent on the outer part of the wave function

� Monitor the convergence of property as the active orbital set
is increased
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Example 1: 2s22p2 in Fe XXI

-----------------------------------

J P n = 5 LSJ

gJ

-----------------------------------

1 + 1.49752 1.5

2 + 1.37712 1.5

2 + 1.11603 1.0

-----------------------------------
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EM transition

Γ′J ′M ′

ΓJM

ΔE = E (Γ′J ′)− E (ΓJ)

gf ,A, S
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Computation of transition properties

� Transition properties, gf , A, S between two states Γ′J ′M ′ and
ΓJM written in terms of

〈Ψ(ΓJM)|P|Ψ(Γ′J ′M ′)〉
� Transition operator depends on ΔE and the multipole,

E1,M1,E2,M2 etc

� For EM transitions two gauges, length and velocity.

� Length gauge is the preferred one

� Consistency between gauges can be used as an uncertainty
estimator
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Computation of transition properties

� Change representation of left- and right hand side wave
functions so that the orbitals of left side become biorthnormal
to the ones at the right side

� Compute transition properties in the normal way (sum over
expansion coefficients and integrals)

� Monitor the convergence of transition properties as the active
orbital set is increased
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Transitions 2p63s2 1S − 2p63s3p 1,3P in Fe XV

IC

M2

E1

3s3p 1P1

3s3p 3P1

3s3p 3P2

3s2 1S0
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Example 2: 2p63s2 1S − 2p63s3p 1,3P in Fe XV

--------------------------------------------------------

MR n = 4 n = 5 n = 6

A (s-1)

--------------------------------------------------------

IC (L) 3.867+07 4.148+07 4.184+07 4.241+07

(V) 3.934+07 4.349+07 4.385+07 4.478+07

E1 (L) 2.289+10 2.155+10 2.149+10 2.148+10

(V) 2.332+10 2.169+10 2.165+10 2.169+10

M2 3.291+00 3.354+00 3.350+00 3.353+00

--------------------------------------------------------
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Iso-electronic sequence

� Iso-electronic sequence, energies and
properties as functions of Z

� Z parameter in

HDC =
N∑
i=1

(
c αi · pi + Vnuc(ri ) + βic

2
)
+

N∑
i>j

1

rij

it follows that energies and properties should be smooth with
respect to Z

� Based on hydrogenic approximations scaling laws can be
worked pout
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Iso-electronic sequences

Regularities along isoelectronic sequences

neutral highly ionized

states arranged by nl states arranged by n

correlation important correlation relatively unimportant

relativistic effects small relativistic and QED effects large

LSJ-coupling good LSJ-coupling breaks down

IC transitions weak IC transitions stronger

M1, E2, M2, E3 weak M1, E2, M2, E3 more important
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Iso-electronic sequence 2p53s, 2p53p, 2p53d
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Iso-electronic sequence 2s2 1S − 2s2p 1,3P

Jönsson et al J. Phys B 31, 3497 (1998).
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Spectrum calculations

� Spectrum calculations, simultaneous calculations of hundreds
of states in different configurations

� Common calculation for the complex (or MR)

� Separate calculations for odd and even states

� Compute transitions between all states

� Apply model for population of states, generate synthetic
spectra
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Spectrum calculations

� Identify the configuration and states to be included (NIST
tables, Chianti database etc)

� Generate all CSFs belonging to the above configurations

� Perform calculation for all states (even and odd) make sure
that radial orbitals have correct number of nodes

� Perform separate MCDHF calculations for even and odd
states, SD substitutions from configurations in the complex,
generate CSFs from these configurations

� Final RCI calculations where the number of CSFs may be
additionally increased to improve accuracy
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Spectrum calculation for Na VII

Work in progress: Ekman, Jönsson, Träbert

� 67 lowest odd states belonging to
2s22p, 2p3, 2s23p, 2s2p3s, 2s2p3d , 2s24p,
2s24f , 2p23p, 2s2p4s

� 66 lowest even states belonging to
2s2p2, 2s23s, 2s23d , 2s2p3p, 2s24s, 2s24d ,
2p23s, 2p23d .

� SD-substitutions to active orbital set up to n = 10

� 3 100 000 CSFs for each parity
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Spectrum calculation for Na VII

� Good consistency with available energies, diff. < 0.02 %

� Some experimental energy levels are obviously wrong

� Some experimental energy levels have wrong labels

� Most experimental energy levels are missing
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Example results
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Synthetic spectra
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Challenges - complex shell structure

System with complex shell structure (many open shells)

� number of CSFs grows very rapidly with increasing active set

� only possible to account for valence correlation

� sometimes necessary to pick configurations one by one
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Challenges - complex shell structure

Lowest even states belonging to 3s23p2 in Si-like ions

� Configurations in complex
{3s23p2, 3s23d2, 3s3p23d , 3p23d2, 3p4}

� n = 7, even : valence + core-valence 1 500 000 CSFs

Lowest odd states belonging to 3s3p3, 3s23p3d

� Configurations in complex
{3s3p3, 3s23p3d , 3s3p3d2, 3p33d , 3p3d3}

� n = 7, odd : valence + core-valence 4 600 000 CSFs
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Perturbers and close degeneracies

� Rydberg series: quantum states where principal quantum
number differs for one electron

� Perturber: quantum state with other charge distribution than
the Rydberg states

� Perturber affects the properties of the Rydberg states
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2s2p2 perturber in 2s2ns 2S in B I

2s2ns 2S 2s2np 2P 2s2nd 2D

n = 2

n = 3

n = 3

n = 6

n = 3

50 000

E (cm−1)

2s2p2 2S

Jörgen Ekman, Per Jönsson Group for Materials Science and Applied Mathematics Malmö University, SwedenAtomic Structure Calculations: Fundamental Concepts

Experimental lifetimes in B I

Lundberg et al PRA 63 032505 (2001)
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Future improvements

� Perturbative corrections to energies

� Use of PCFI: divide and conquer strategy that divides large
calculations to a series of small ones. Allows close
degeneracies to be handled more efficiently.

� Fine-tuning to deal with close degeneracies
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Thank you for your attention
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