Line Shapes and Broadening

Yuri Balchenko
National Institute of Standards and Technology
Gaithersburg, MD, USA

ICTP-IAEA Advanced School on Modern Methods in Plasma Spectroscopy
Mar 16-20, 2015

Books and reviews

- S. Alexiou, HEDP 5, 225 (2009)
- E. Stambulchik and Y. Maron, HEDP 6, 9 (2010)

Books and reviews

- Books and reviews

- S. Alexiou, HEDP 5, 225 (2009)
- E. Stambulchik and Y. Maron, HEDP 6, 9 (2010)

Line broadening

- Instrumental
- Collisonal (broadening) – Stark – Van der Waals – Resonance
- Doppler
- Natural

Many-body problem:
QM picture of line broadening is described in terms of a complete QM system of radiator + all perturbers

Doppler broadening

Doppler shift: $\frac{\nu}{\nu_0} = 1 - \frac{v}{c}$

Fraction of atoms with $v_N \leq v \leq v_N + dv_N$:

$N = \int f_N \exp \left(\frac{\nu - \nu_0}{\Delta \nu} \right) dv_N$

$N = \int f_N \exp \left(\frac{\nu - \nu_0}{\Delta \nu} \right) dv_N$

$\delta \nu_{1/2} = \frac{\Delta \nu}{2} = \frac{c}{2v_N}$

FWHM = $2\sqrt{2} \delta \nu_{1/2} = a_0 = 7.715 \times 10^{-5} \text{ m}$

$\delta \nu_{1/2} = \frac{c}{2v_N}$

$\text{FWHM} = 2\sqrt{2} \delta \nu_{1/2} = a_0 = 7.715 \times 10^{-5} \text{ m}$

$\delta \nu_{1/2} = \frac{c}{2v_N}$

$\text{FWHM} = 2\sqrt{2} \delta \nu_{1/2} = a_0 = 7.715 \times 10^{-5} \text{ m}$

$\delta \nu_{1/2} = \frac{c}{2v_N}$

$\text{FWHM} = 2\sqrt{2} \delta \nu_{1/2} = a_0 = 7.715 \times 10^{-5} \text{ m}$

Energy spectrum:

Radiator loses energy:

Lorentz profile:

Classical atomic oscillator

$f(t) = f_0 \exp(i \omega t)$

Energy spectrum:

$L(\omega) = \int_0^\infty f(t) e^{-i \omega t} dt$

Radiator losas energy:

$f(\omega) = f_0 \exp(i \omega t)$

$L(\omega) = \int_0^\infty f(t) e^{-i \omega t} dt$
Interaction between atom and perturber is a classical particle. No transitions are produced by the perturber.

Atom is embedded in plasma. Atom is unperturbed between collisions.

Perturber moves with a constant velocity,\(\text{moving} \) charged perturbers of motionless (slowly moving) charged perturbers. Of motionless (slowly moving) charged perturbers.

Convolution of G and L: Voigt profile

\[\varphi_v(\omega) = \int_{-\infty}^{\infty} \varphi_G(\omega - x) \varphi_L(x) dx \]

\[= \frac{\gamma}{2\pi} \int_{0}^{\infty} \frac{\exp(-x^2)}{\sqrt{x^2} + \alpha^2} dx \]

\[H(\alpha, v) = \frac{\gamma}{\pi} \int_{0}^{\infty} \frac{\exp(-x^2)}{\sqrt{x^2} + \alpha^2} dx \]

\[H(\alpha, v) \approx e^{-\alpha^2} + \alpha^2/(\pi^{1/2} v^2) \]

At 1%: \(\delta_{\text{FWHM}} = \left[\frac{\delta_{\text{FWHM}}}{2} \right]^2 + \delta_{\text{FWHM}}^2 \]

Gauss+Lorentz? Voigt!

Lorentz profile

\[\varphi_L(\omega) = \frac{1}{\pi} \frac{\gamma/2}{(\omega - \omega_0)^2 + (\gamma/2)^2} \]

FWHM = \(\gamma \)

peak x FWHM = 0.64

Pressure broadening: classical approach

Impact theory

- Oscillator
- Emitted wavetrain is interrupted
- Instantaneous phase shift
- Transition to another level
- Oscillator "starts" and "stops"
- Duration of collision is small compared to the mean time between collisions

Quasi-static theory

- Atom is embedded in plasma of motionless (slowly moving) charged perturbers.
- The field fluctuates
 - Spectral line position shifts
 - Final shape is obtained from the distribution of microfields

Impact (cont'd)

Lindholm-Foley approximation:

\[f(t) = \exp \left[i \omega_0 t + \frac{1}{2} \int_{t_{-\infty}}^{t} \Delta \omega(t') dt' \right] = \exp \left[i \omega_0 t + \frac{1}{2} \int_{t_{-\infty}}^{t} \Delta \omega(t') dt' \right] \]

\[I(\omega) = \frac{N \sigma_0}{(\omega - \omega_0)^2 + (N \sigma_0)^2} \]

\[\sigma_0 = 2 \pi \int_{0}^{\infty} \left[1 - \cos \theta(\alpha) \right] d\alpha; \quad \sigma_1 = 2 \pi \int_{0}^{\infty} \sin \theta(\alpha) \alpha d\alpha; \]

\[\text{Width: } \Gamma = 2N \sigma_0; \quad \text{Shift: } \Delta \omega_0 = N \sigma_0 \]

Natural Broadening: QM

Quantum mechanics gives the same result as classical theory although it is the finite width of the discrete energy levels rather than decay of the wave train.

\[\Delta E \geq \hbar/2 \]

\[\gamma = \hbar (\gamma = 2 \Delta E, \tau = 1/\Sigma A) \]

\[\delta \omega = \gamma; \quad \frac{\delta A}{A} = \frac{\lambda}{2 \pi c} \gamma; \quad \frac{\lambda}{2 \pi c} \Delta A \]

Weisskopf & Wigner

Generally, natural broadening is negligible compared to Doppler but: sum over \(A \)'s includes autoionization (if present)

Collisional (pressure) broadening

Interaction of the atom(-ic oscillator) with other plasma particles:

- Electric fields are most important and therefore "Stark broadening"
- Van der Waals: two dipole moments (neutrals); short-range interaction

Weisskopf theory:

- Atom is unperturbed between collisions (\(\tau_c \))
- Perturber is a classical particle
- Perturber moves with a constant velocity, straight line, velocity \(v \), impact parameter \(\rho \)
- No transitions are produced by the perturber (phase shifts only)
- Interaction between atom and perturber is described by: \(\Delta \omega(t) = \Delta \omega_0 \gamma, \gamma = v \rho/2 \gamma \)

Lorentz:

\[I(\omega) = \frac{1}{\pi} \frac{\gamma}{(\omega - \omega_0)^2 + (\gamma/2)^2} \]

\[\Gamma = 2 \pi \hbar \left[\frac{N \sigma_0}{\rho} \right]^{3/2} \]

Impact Approximation

Problems with the classical impact approximation

- Time of interest \(\tau = 1/\Delta \omega \) becomes smaller than the collision time \(\tau_c = \rho/v \) for large \(\Delta \omega \): problem at large displacements!
- Low densities preferred
- Collisions overlap at \(\rho \rightarrow \infty \) (\(\tau_c \) exceeds the mean time between collisions)
- Classical impact theory is adiabatic
Impact Approximation: quantum

M. Baranger, 1958:

\[\Delta \omega = n_x \int_0^\infty v f_x(v) \left(\sum_{i,j} \sigma_{i,j}(v) + \sum_j \sigma_{j,j}(v) \right) dv + \]

\[n_x \int_0^\infty v f_x(v) \left(\int f_i(\theta, v) - f_i(\theta, v)^2 \right) dv \]

Impact Approximation: FWHM

M. Baranger, 1958:

\[\Delta \omega \approx n_x \int_0^\infty v f_x(v) \left(\sum_{i,j} \sigma_{i,j}(v) + \sum_j \sigma_{j,j}(v) \right) dv + \]

\[n_x \int_0^\infty v f_x(v) \left(\int f_i(\theta, v) - f_i(\theta, v)^2 \right) dv \]

Example: problems in isolated lines

- **Isolated** ion lines, which are purely \(e^+ \) impact broadened, show factor of \(\sim 2 \) discrepancies between theory and experiment.
 - Techniques used to resolve this issue are:
 - sophisticated semiclassical calculations
 - fully quantum mechanical (close coupling) calculations, different formulations
 - population effects
 - However, there has been no resolution yet

\[\text{via a collision} \quad \text{2p} \quad \text{via a collision} \quad \text{2s} \]

Stark effect

From: MA Gigosos (2014)

Linear for H, quadratic for others (weak field)

Nearest Neighbor Approximation

- Only nearest neighbor is important
- No interaction between the perturbers
- Not really a “statistical” model

\[W(r) dr = \left(1 - \int_0^r W(x) dx \right) 4\pi r^2 N dr \]

\[W(r) = 4\pi r^2 N exp \left(\frac{-4}{3} \pi r^3 N \right) \]

Simple...and wrong!

Quasi-static approximation

- Electric field (by the ions) is considered (almost) constant at the radiator during emission
- Plasma microfield splits and shifts level via Stark effect
- \(E \) is not constant but has some distribution \(\Rightarrow \) components smeared \(\Rightarrow \) line profile

\[\text{From: MA Gigosos (2014)} \]

Holtsmark model (1919)

- Ensemble of perturbers; statistically independent; interaction isotropic
- No interaction between perturbers
- Calculation steps
 - Probability of finding the nearest ion at distance \(r \): \(P(r) \)
 - Probability of the emitter being subjected to field \(F(\theta) \)
 - Shift of levels calculated for each field, result convolved

\[F_0 = 2.603 \alpha N^{2/3} \]

\[\beta = \frac{P}{F_0}, \quad \int_0^\infty H(\beta) d\beta = 1 \]

\[H(\beta) = \frac{2}{\beta} \int_0^\infty x \cdot \sin(\beta x) \cdot e^{-x^2} dx \]

\[\text{Wings: } \sim (\Delta \omega)^{-5/2} \]
How good is Holtsmark?..

Holtsmark vs Hooper
(ion-ion correlations, Debye shielding)
\[a = \frac{R_0}{\rho} \]
\[R_0 = \frac{3}{\gamma E_{\text{CEF}}} \]

Wkh (1975)

\[N_e = 8 \times 10^{16} \text{ cm}^{-3} \]
Quasi-static theory works quite well for hydrogen but ion dynamics is important (sometimes electrons are important too)

Modern computer simulations

\[i\hbar \frac{d}{dt} U(t) = H(t) U(t) = (\hat{H}_0 + qE \cdot \hat{R}) U(t) \]
\[D(t) = U^\dagger(t) D(0) U(t) \]
\[\Phi(t) = Tr[D(0) \cdot D(t) \beta] \]
\[I(\Delta \omega) = \frac{1}{\pi} R \int_0^{\infty} e^{i \Delta \omega t} \Phi(t) dt \]

Exp vs theory (CSM)

\[H_3 \]
\[n_e = 1.2 \times 10^{13} \text{ cm}^{-3} \]
\[T_e = 0.16 \text{ eV} \]

Inglis-Teller effect

Weise et al (1972)

\[\lg n_2 [\text{cm}^{-3}] = 23.12 + 4.5 \lg Z - 1.5 \lg z - 7.5 \lg n_{\text{max}} \]

Modern CS

- Trivial MD
 - Electrons and protons move along straight lines
- Full MD
 - All perturbers interact
- 200 e and 200 p; a cube with mirror walls

Where's good data?

- Hydrogen atoms
 - Griem (1974)
- Non-hydrogenic ions
 - Griem (1974)
 - Modified semiclassical approach, Dimitrijevic and Konjevic (1980)

- NIST Atomic Spectral Line Broadening Bibliographic Database
 - http://physics.nist.gov/cgi-bin/ASHBib1/LineBroadBib.cgi
- Stark-B Database
 - http://stark-b.obspm.fr/