Experimental determination of the ion temperature and hydromotion in an imploding plasma and implications to pressure and energy balance

Y. Maron
Weizmann Institute of Science, Israel

Motivation for the T_{ion} measurement

- The ion temperature plays a crucial role in energy-transfer processes.
- Understanding the dynamics of stagnating and imploding plasmas.
- Relevant for HED plasmas and astrophysics.

Discriminating between the thermal and hydrodynamic motion is very difficult since both contribute to Doppler broadening similarly.

Two methods were developed and implemented:
1. Doppler method
2. Stark method

The Experimental Setup

The WIS Z-pinch
- Gas-puff load (Neon)
- Shell-on-jet configuration
- $\Omega_{\text{out}} = 38$ mm
- A – K Gap = 9 mm

Typical Current and XRD traces for $I_{\text{peak}} = 0.5$ MA

Lyman and satellites analysis - Doppler and n_e measurement

Collaborators

Weizmann Institute of Science
I. Uschmann, E. Foerster
University of Jena, Germany
D. Lepell, C. Coverdale, M. Cuneo, E. Yu
Sandia National Laboratories, U.S.A
J. Giuliani, W. Thornhill, J. Apruzese, T. Mehlhorn
Naval Research Laboratory, U.S.A
C. Deeney
NSTech, U.S.A.

Z-pinch plasma experiment

An axial current driven through a cylindrical plasma induces an azimuthal magnetic field which compresses the plasma radially, forming a hot and dense core.

Implosion (compression, acceleration, and heating) Stagnation (H-like ions)

Lyman-α-satellites

- Spherically-bent KAP
- Ultra-high resolutions:
 - Spectral >6700
 - Temporal –1 ns
 - Spatial –50 µm
- Imaging along z-axis

Knowledge of n_i is essential!

The Stark method

- The Stark method employs Stark-broadened high-α spectral lines.
- Stark is dominated by ionic fields, which are affected by T_i.
- Corrections to Stark width are \propto the ion-ion coupling $\Gamma_{ii}=\frac{e^2}{4\pi\varepsilon_0}\frac{Z^2}{r_i}\langle \delta \rangle$.
- Moderate coupling is required (for our plasma $0.1 \leq \Gamma_{ii} \leq 0.5$).
- Stark line-shape calculations are required (including correlation and ion-dynamics effects).

Challenges in measuring T_{ion} from the plasma spectrum

- Lines must be dominated by Stark broadening (high-α or low-Z).
- Optically-thin, high-α lines are weak.
- In addition, one must obtain simultaneously:
 1. The electron density - for the line-shape calculations
 2. The total Doppler broadening - in order to de-convolve the Stark broadening from the line shape.
- The line-shape calculations account for inter-particle correlations, ion dynamics, $\Delta n=0$ level mixing.
- High resolutions in spectrum, time, and space are crucial.

Results

1-ns gated spectra images obtained simultaneously at $t=+5$ ns

For the analysis, all line spectra used are from the same location.

Error-bar analysis of T_i for $t=+6$ ns

Ly_α shape calculated for $n_i=3\times10^{20}$ cm$^{-3}$ and $T_{ion}=200$ eV measured. for different T_i, accounting for: Total Doppler- measured simultaneously and Instrumental broadening-experimentally determined.

Considerations

- For fusion we need fast dissipation of \(T_i \) (effective) into heat, and slow ion-electron energy transfer.
- For radiation sources we need fast dissipation of \(T_i \) (effective), and the ion-electron energy transfer rate should not be slower.

Possibilities for application in HED experiments

Ion temperature in W implosions on Z:

The Stark and Doppler widths of \(T_i \) for Ly\(_6\), and Ly\(_6\) at 20% titanium being embedded in a tungsten plasma:

\[
n_i = 10^{23} \, \text{cm}^{-3}, \quad Z = 60, \quad T_{\text{ion}} = T_e
\]

Possibilities for application in HED experiments

Reflected-Shock model

- High \(T_{\text{ion}} \) causes the pressure to remain high and the radiation to be slower.
- This prevents radiative collapse.
- Indeed, both our experiment and the wire-array experiments (on much larger machine >18 MA, and 100-ns implosion), showed that globally the process is in agreement with a reflected-shock model:

\[
\begin{align*}
\frac{n_2}{n_1} &= \frac{c_1}{c_2} \\
n_2 &= \frac{m_1 v_1^2 + T_{\text{eff}} + Z_1 T_{\text{e1}}}{m_2 v_2^2 + T_{\text{eff}} + Z_2 T_{\text{e2}}} \\
\frac{m_2 v_2^2}{2} &= \frac{m_1 v_1^2}{2} + \Delta E_{\text{ion}} + \frac{5}{2} (T_{\text{ion}} + Z_1 T_{\text{e1}})
\end{align*}
\]

Conclusions

- Since for the MHD instabilities to grow, the Alfven time at the stagnating plasma must be short relative to the stagnation duration, the low-B inferred suggests less likelihood for such a growth at stagnation.

- Related papers:
Summary

- Knowledge of T_{ion} is essential for hot-and-dense plasma research.
- Distinguishing thermal and hydrodynamic motions is highly important.
- Two methods were employed to determine $T_{ion}(t)$:
 - The Doppler method: using the measured drop in T_{ion}
 - The Stark method: using the Stark line shape
- The dissipation of T_{ion} is determined; affects the radiation-pulse duration.
- T_{ion} contributes to the balance of the imploding-plasma pressure. Allowed for inferring the energy balance between the plasma kinetic-energy and the radiation, and for explaining the appearance of an expanding shock.
- The methods can be useful for other HED plasmas.

Lyα Satellite-Line Shapes Give the Total $E_{k,ion}$

(Only the D2 satellite is shown)

Results

\[
T_{eff}^{\text{ion}} = \frac{2}{3} E_{tot}^{\text{ion}} = T_i + \frac{2}{3} E_{k,ion}^{\text{hydro}}
\]

\[
dT_i^{eff} = \frac{2}{3} \frac{dE_{k,ion}^{\text{hydro}}}{dt} - \frac{2}{3} \frac{dE_{k,ion}^{\text{hydro}}}{dt}
\]

\[
\frac{dT_i}{dt} = -\frac{T_i - T_c}{\tau_{sc}} - \frac{2}{3} \frac{dE_{k,ion}^{\text{hydro}}}{dt}
\]

\[
\frac{d}{dt} \left(T_i + \frac{2}{3} E_{k,ion}^{\text{hydro}} \right) = \frac{d}{dt} T_{eff}^{\text{ion}} = -\frac{T_i - T_c}{\tau_{sc}}
\]

$n_e = 8 \times 10^{28}$ cm$^{-3}$, $T_c = 200$ eV

$Z_{eff} = 9$, $\tau_{sc} = 5 \times 10^{-11}$ s