FAC & cFAC

Evgeny Stambulchik

Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

Joint ICTP-IAEA School on Atomic Processes in Plasmas
February 27 – March 3, 2017
Trieste, Italy
Main features

- Calculates atomic structure, radiative transition rates, electron impact excitation and ionization, photo ionization and radiative recombination, autoionization and dielectronic capture.
- The atomic structure calculations are based on the relativistic configuration interaction (CI) with independent particle basis wavefunctions.
- The basis wavefunctions are derived from a local central potential, which is self-consistently determined to represent electronic screening of the nuclear potential.
- Relativistic effects are fully taken into account using the Dirac Coulomb Hamiltonian.
- Higher order QED effects are included: Breit interaction and self-energy and vacuum polarization effects.
- Continuum processes are treated in the distorted-wave (DW) approximation.
- Fast and reasonably accurate ($\sim 10^{-4}$ in level energies).
FAC vs. cFAC
Short history

FAC
is a software package for the calculation of various atomic processes, written by Ming Feng Gu at the Space Science Laboratory of Berkeley.

cFAC
was started around 2010 (based on FAC-1.1.1a, released in 2006), initially focusing on providing large volumes of data as required, e.g., for C-R plasma modeling, and eliminating reliance upon third-party Fortran numerical libraries with their C equivalents (hence the change in the package name).

aNot uniquely defined...
One of my most productive days was throwing away 1,000 lines of code.

Ken Thompson
FAC vs. cFAC

Availability

Home page for both FAC and cFAC
https://www-amdis.iaea.org/FAC/

Github repository for FAC
https://github.com/fnevgeny/fac
Maintainers: M. F. Gu and E. Stambulchik

Github repository for cFAC
https://github.com/fnevgeny/cfac
Maintainer: E. Stambulchik

https://github.com/fnevgeny/cfac/issues
to submit feature requests or report bugs.
FAC vs. cFAC

Licensing

FAC

Recently (summer 2015), Ming Feng Gu kindly agreed to release the FAC sources under the GPL (version 3 or higher) license: http://www.gnu.org/licenses/gpl-3.0.en.html. However, the GPL’ed sources (authored by MFG) are only part of the whole FAC package. Use at your own discretion!

cFAC

Some bits of the FAC sources, which are still used in cFAC, were published in *Computer Physics Communications*, and as such, are licensed for non-profit or academic use only, see http://cpc.cs.qub.ac.uk/licence/licence.html.

To compile in these *optional* CPC-licensed modules, pass the `--with-cpc-module` configure flag and explicitly agree to the CPC licensing terms. As a result, the “sfac” executable will not be redistributable!
FAC vs. cFAC
Compatibility

FAC components
SFAC and PFAC—a thin Python wrapper around SFAC + CRM and POL modules.

cFAC components
SFAC, PFAC, CFACDB library, CFACDBU utility, CFACDB browser/explorer.

SFAC compatibility
In general, SFAC scripts that work with FAC should work unchanged with cFAC. However, MBPT and R-matrix modules were removed.
SFAC can be used both in interactive and batch mode. When invoked without arguments, it runs in the interactive mode:

```bash
% sfac

>>> Info()
==========================================
cFAC-1.6.1 http://github.com/fnevgeny/cfac
Based on the Flexible Atomic Code (FAC)
by Ming Feng Gu
Maintained by Evgeny Stambulchik
==========================================
>>> Print('Hello!')
Hello!
>>> Exit()
%```
Examples and manual

Let's copy a few demos to your home directory:

```bash
% cp -a /home/nfs3/smr3105/estambul/cfac-demo ~/
% cd ~/cfac-demo
%
```

It is a good opportunity to load the official documentation:

```
% acroread /home/nfs3/smr3105/share/doc/cfac/manual.pdf&
%```
% gedit Fe_XVII.sf &

Define the species
SetAtom('Fe')
(as you see, lines beginning with # are comments)

Ne–like ion:
Ground state
Config('n2', '1s2 2*8')
... and a group of singly–excited to n=3 states
Config('n3', '1s2 2*7 3*1')

It is a good idea to check the configurations explicitly:
ListConfig()
Let's run sfac:

```bash
% sfac Fe_XVII.sf
```

<table>
<thead>
<tr>
<th>n</th>
<th>ℓ ±</th>
<th>1s+</th>
<th>2s±</th>
<th>2p±</th>
<th>3d±</th>
</tr>
</thead>
<tbody>
<tr>
<td>n2</td>
<td>0</td>
<td>1s+</td>
<td>2s+</td>
<td>2p-</td>
<td>2p+</td>
</tr>
<tr>
<td>n3</td>
<td>1</td>
<td>1s+</td>
<td>2s+</td>
<td>2p-</td>
<td>2p+ 3d+</td>
</tr>
<tr>
<td>n3</td>
<td>2</td>
<td>1s+</td>
<td>2s+</td>
<td>2p-</td>
<td>2p+ 3d+</td>
</tr>
<tr>
<td>n3</td>
<td>3</td>
<td>1s+</td>
<td>2s+</td>
<td>2p-</td>
<td>2p+ 3d+</td>
</tr>
<tr>
<td>n3</td>
<td>4</td>
<td>1s+</td>
<td>2s+</td>
<td>2p-</td>
<td>2p+ 3d-</td>
</tr>
</tbody>
</table>

...

| n3 | 15 | 1s+ | 2s+ | 2p- | 2p+ 3s+ |

```

“nl±” means one-electron \(|nlj = ℓ ± 1/2\).
\[ H = \sum_{i=1}^{N} H_D(i) + \sum_{i<j} \frac{1}{r_{ij}}, \]

\( H_D(i) \) is the single-electron Dirac Hamiltonian. By diagonalizing the total Hamiltonian, one obtains

\[ \psi = \sum_{\nu} b_\nu \Phi_\nu, \]

with the configuration state functions (CSF’s) \( \Phi_\nu \) being the Slater constructs of \( N \) one-electron Dirac spinors \( \varphi_{n\kappa m} \)

\[ \varphi_{n\kappa m} = \frac{1}{r} \left( \begin{array}{c} P_{n\kappa}(r)\chi_{\kappa m}(\theta, \phi, \sigma) \\ iQ_{n\kappa}(r)\chi_{-\kappa m}(\theta, \phi, \sigma) \end{array} \right) \]

\( \kappa \) is the relativistic angular quantum number:

\[ \kappa = (l - j)(2j + 1). \]
In the Dirac-Fock-Slater method, $P_{n\kappa}$ and $Q_{n\kappa}$ satisfy

\[
\left( \frac{d}{dr} + \frac{\kappa}{r} \right) P_{n\kappa} = \alpha \left( \epsilon_{n\kappa} - V + \frac{2}{\alpha^2} \right) Q_{n\kappa} \\
\left( \frac{d}{dr} - \frac{\kappa}{r} \right) Q_{n\kappa} = \alpha \left( -\epsilon_{n\kappa} + V \right) P_{n\kappa},
\]

for an effective central field $V(r) = V^N(r) + V^{ee}(r)$. 
Radiative transitions

For a given multipole operator $O^L_M$:

$$S_{fi} = \left| \langle \psi_f | O^L_M | \psi_i \rangle \right|^2 \equiv |M_{fi}|^2$$

$$g f_{fi} = \frac{1}{2L + 1} \omega (\alpha \omega)^{2L-2} |M_{fi}|^2$$

$$g A_{fi} = 2 \alpha^3 \omega^2 g f_{fi}$$

Note: $M_{fi}$ differ from reduced matrix elements as defined, e.g., in the Cowan’s book, by a factor of $\sqrt{2}$. 
Electron impact excitation (EIE) I

Different treatments of the continuum wavefunctions:

- The plane-wave (PW) Born approximation uses an unperturbed plane wave for free orbitals.
- The Coulomb-wave (CW) Born approximation takes into account the distortion of the continuum due to a pure Coulomb potential.
- The most accurate of this class is the distorted-wave (DW) approximation, in which the free orbitals are calculated in a more realistic potential taking into account the electronic structure of the target ion.

By default, FAC uses DW for calculating EIE cross sections.

Note: DW is not accurate for neutral atoms; \( Z \gtrsim 4 \) should be fine.
The EIE cross subsection $\sigma_{01}$ from the initial state $\psi_0$ to the final state $\psi_1$ is

$$\sigma_{01} = \frac{\pi}{k_0^2 g_0} \Omega_{01},$$

$g_0$ is the statistical weight of the initial state, and $k_0$ is the kinetic momentum of the incident electron,

$$k_0^2 = 2\varepsilon_0 \left(1 + \frac{\alpha^2}{2}\varepsilon_0\right),$$

and the collision strength is

$$\Omega_{01} = 2 \sum_{\kappa_0\kappa_1} \sum_{J_T} (2J_T + 1) |<\psi_0\kappa_0, J_T M_T| \sum_{i<j} \frac{1}{r_{ij}} |\psi_1\kappa_1, J_T M_T>|^2$$
Electron impact ionization (EII) I

\[ \sigma(\varepsilon_0, \varepsilon) = \frac{1}{k_0^2 g_0} \Omega_{01} \]

(note a different from EIE numerical factor - \( \pi \) is missing).

DW calculations of EII processes are rather slow; by default, Binary-Encounter-Dipole (BED) approach is used.
\[\sigma_{PI} = 2\pi\alpha \frac{df}{dE}\]

\[\sigma_{RR} = \frac{\alpha^2 g_i}{2 g_f \epsilon (1 + 0.5\alpha^2 \epsilon)} \sigma_{PI},\]

The differential oscillator strength:

\[\frac{df}{dE} = \frac{\omega}{g_i} (2L + 1)^{-1}(\alpha\omega)^{2L-2} S,\]

where \(L\) is the rank of the multipole operator inducing the transition, and the generalized line strength is

\[S = \sum_{\kappa J_T} |\langle \psi_f, \kappa; J_T| O^L \| \psi_i \rangle|^2,\]

and \(O^L\) is the multipole operator inducing the transition.
Autoionization and Dielectronic Recombination

In the first order perturbation theory, the AI rate is

\[ A^a = 2 \sum_\kappa \left| \langle \psi_f, \kappa; J_T M_T | \sum_{i<j} \frac{1}{r_{ij}} | \psi_i \rangle \right|^2, \]

The inverse process is the dielectronic capture (DC). The DC strength is

\[ S_{DC} = \frac{g_i \pi^2}{2g_f E_{if}} A^a, \]

\( E_{if} \) is the resonance energy.

An AI state formed by DC may either autoionize, or radiatively decay. In the later case, one talks about dielectronic recombination (DR).

Note: FAC does not calculate the DR rate coefficients; one needs to loop over all the possible channels.
FAC vs. cFAC
Output format options

**FAC**

- Calculations
- *Table() → Binary → PrintTable() → ASCII

**cFAC**

- Calculations
- *Table() → Binary
- StoreTable() → SQLite
- PrintTable() → ASCII

**Future**

- Calculations
- ???? → SQLite
- ???? → ASCII
# An ultra-simple demo

```python
SetAtom('Fe')
```

# He-like

```python
Config('2.gc', '1s2')
Config('2.ex', '1s1 2*')
Config('2.ai', '2*2')
```

# H-like

```python
Config('1.gc', '1s')
Config('1.ex', '2*1')
```

# Bare nucleus

```python
Config('0.gc', '')
```
# Start from the lowest charge state of interest and go up

# Keep user updated
Print('nele = 2 (He)')

ConfigEnergy(0)
OptimizeRadial(['2.gc'])
ConfigEnergy(1)

# Include configuration interactions between all
# 2–electron states
Structure('le.bin', 2)

# All radiative transitions of this (2–electron) charge state
# Calculate E1, M1, and E2
TRTable('tr.bin', 2, -1)
TRTable('tr.bin', 2, +1)
TRTable('tr.bin', 2, -2)
# Again, all collisional transitions of He–like
CETable('ce.bin', 2)

# Same for H
Print('nele = 1 (H)')

ConfigEnergy(0)
OptimizeRadial(['1.gc'])
ConfigEnergy(1)

Structure('le.bin', 1)
TRTable('tr.bin', 1, -1)
CETable('ce.bin', 1)

# Now we have also ionization processes; He–like wavefunctions # are already calculated with the optimized (for He!) potential
AITable('ai.bin', 2)
CITable('ci.bin', 2)
RRTable('rr.bin', 2)
Print('nele = 0')
Structure('le.bin', 0)
# For the bare nucleus, only CI and RR (from H) exist
CITable('ci.bin', 1)
RRTable('rr.bin', 1)

# Initialize the SQLite database store, erasing if exists
StoreInit('Fe.db', 1)

# Store the binary data into the DB
StoreTable('le.bin')
StoreTable('tr.bin')
StoreTable('ai.bin')
StoreTable('ci.bin')
StoreTable('rr.bin')
StoreTable('ce.bin')

# Close the DB
StoreClose()
# Alternatively (or in addition), you may want to use
# the old FAC ASCII output format:

MemENTable('le.bin')

PrintTable('le.bin', 'le.asc', 1)
PrintTable('tr.bin', 'tr.asc', 1)
PrintTable('ai.bin', 'ai.asc', 1)
PrintTable('rr.bin', 'rr.asc', 1)
PrintTable('ci.bin', 'ci.asc', 1)
PrintTable('ce.bin', 'ce.asc', 1)
CFACDB is a set of application programming interface (API) calls for accessing cFAC-generated databases in the SQLite format from C or Fortran codes.

In addition, collisional rates in a Maxwellian plasma can be obtained on-the-fly, using inter- and extrapolation between/beyond calculated data points.

The data are returned via user-provided “sink” callback routines, with negligible CPU and memory overheads.
A Graphical User Interface (GUI) tool. It is built as a Firefox extension, making it usable in any modern computer environment.
CFACDB browser
Example: the “mini” Fe case database

<table>
<thead>
<tr>
<th>Species</th>
<th>Atomic number</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>26</td>
<td>56</td>
</tr>
</tbody>
</table>

Number of electrons: 2, \[ \text{\Delta} \text{Rule: } 0 \circlearrowleft 1 \] Transition \[ \Delta E = 251.893576750703 \]

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1s+2(0)0</td>
<td>-665.320073873914</td>
</tr>
<tr>
<td>1</td>
<td>1s+1(1)1 2s+1(1)2</td>
<td>-421.481465706087</td>
</tr>
<tr>
<td>2</td>
<td>1s+1(1)1 2p-1(1)0</td>
<td>-420.412730525578</td>
</tr>
<tr>
<td>3</td>
<td>1s+1(1)1 2p-1(1)2</td>
<td>-420.336954319012</td>
</tr>
<tr>
<td>4</td>
<td>1s+1(1)1 2s+1(1)0</td>
<td>-420.33315114923</td>
</tr>
<tr>
<td>5</td>
<td>1s+1(1)1 2p-1(3)4</td>
<td>-419.79739372527</td>
</tr>
<tr>
<td>6</td>
<td>1s+1(1)1 2p+1(3)2</td>
<td>-419.12117173246</td>
</tr>
<tr>
<td>7</td>
<td>2s+2(0)0</td>
<td>-167.51846811663</td>
</tr>
<tr>
<td>8</td>
<td>2s+1(1)1 2p-1(1)0</td>
<td>-167.40460824857</td>
</tr>
<tr>
<td>9</td>
<td>2s+1(1)1 2p-1(1)2</td>
<td>-167.227594422543</td>
</tr>
<tr>
<td>10</td>
<td>2s+1(1)1 2p+1(3)4</td>
<td>-166.653098546333</td>
</tr>
<tr>
<td>11</td>
<td>2p-2(0)0</td>
<td>-166.221355266761</td>
</tr>
<tr>
<td>12</td>
<td>2p-1(1)1 2p+1(3)2</td>
<td>-165.86003871478</td>
</tr>
<tr>
<td>13</td>
<td>2p-1(1)1 2p+1(3)4</td>
<td>-165.61952660843</td>
</tr>
<tr>
<td>14</td>
<td>2s+1(1)1 2p+1(3)2</td>
<td>-165.31045920609</td>
</tr>
<tr>
<td>15</td>
<td>2p+2(4)4</td>
<td>-164.844863470214</td>
</tr>
<tr>
<td>16</td>
<td>2p+2(0)0</td>
<td>-163.550783997367</td>
</tr>
</tbody>
</table>

Radiative transitions

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1s+2(0)0</td>
<td>-665.320073873914</td>
</tr>
<tr>
<td>1</td>
<td>1s+1(1)1 2s+1(1)2</td>
<td>-421.481465706087</td>
</tr>
<tr>
<td>2</td>
<td>1s+1(1)1 2p-1(1)0</td>
<td>-420.412730525578</td>
</tr>
<tr>
<td>3</td>
<td>1s+1(1)1 2p-1(1)2</td>
<td>-420.336954319012</td>
</tr>
<tr>
<td>4</td>
<td>1s+1(1)1 2s+1(1)0</td>
<td>-420.33315114923</td>
</tr>
<tr>
<td>5</td>
<td>1s+1(1)1 2p-1(3)4</td>
<td>-419.79739372527</td>
</tr>
<tr>
<td>6</td>
<td>1s+1(1)1 2p+1(3)2</td>
<td>-419.12117173246</td>
</tr>
<tr>
<td>7</td>
<td>2s+2(0)0</td>
<td>-167.51846811663</td>
</tr>
<tr>
<td>8</td>
<td>2s+1(1)1 2p-1(1)0</td>
<td>-167.40460824857</td>
</tr>
<tr>
<td>9</td>
<td>2s+1(1)1 2p-1(1)2</td>
<td>-167.227594422543</td>
</tr>
<tr>
<td>10</td>
<td>2s+1(1)1 2p+1(3)4</td>
<td>-166.653098546333</td>
</tr>
<tr>
<td>11</td>
<td>2p-2(0)0</td>
<td>-166.221355266761</td>
</tr>
<tr>
<td>12</td>
<td>2p-1(1)1 2p+1(3)2</td>
<td>-165.86003871478</td>
</tr>
<tr>
<td>13</td>
<td>2p-1(1)1 2p+1(3)4</td>
<td>-165.61952660843</td>
</tr>
<tr>
<td>14</td>
<td>2s+1(1)1 2p+1(3)2</td>
<td>-165.31045920609</td>
</tr>
<tr>
<td>15</td>
<td>2p+2(4)4</td>
<td>-164.844863470214</td>
</tr>
<tr>
<td>16</td>
<td>2p+2(0)0</td>
<td>-163.550783997367</td>
</tr>
</tbody>
</table>

Collisional processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Energy</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ( CE )</td>
<td>12.5442322469137</td>
<td>0.0000086081272456795</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>97.4950829824424</td>
<td>0.000008679242124036</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>196.189053384014</td>
<td>0.00005470549635213</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>307.34301086054</td>
<td>0.000004557567083636</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>429.521282985989</td>
<td>0.0000039228693991188</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>561.25469998286</td>
<td>0.000003837510613963</td>
</tr>
<tr>
<td>1 ( CE )</td>
<td>701.200758037383</td>
<td>0.0000031787254556579</td>
</tr>
</tbody>
</table>