Recent Progress on Tungsten Spectroscopy
And Its Data Analysis in Large Helical Device

*National Institute for Fusion Science, Toki 509-5292, Gifu, Japan
**Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu, Japan
***Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan
**Institute of Plasma Physics, Hefei 230031, China
***Southwestern Institute of Physics, Chengdu 610041, China

E-mail address: morita@nifs.ac.jp

IAEA Technical Meeting on Atomic, Molecular and Plasma Material Interaction Data for Fusion Science and Technology
Daejeon Convention Center (DCC), Daejeon, Korea
15 - 19 December 2014

This work was partially supported by the LHD project (NIFS14ULPP010), JSPS KAKENHI Grant Number 23340183 and the JSPS/SRF/NSFC All Friendship Program in the field of Plasma Physics (NSFC No.11305145, SRF No. No.2012KA5000445).

Introduction (I): Requirement for W diagnostics and transport study in ITER

- The following requirement can be solved in LHD.
 1. W diagnostics
 - Line identification
 - Visible: divertor plasma (e.g., W\(^{5+}\))
 - VUV: SOL plasma (e.g., W\(^{5+}\))
 - EUV: edge plasma (e.g., W\(^{5+}\))
 - X-ray: core plasma (e.g., W\(^{5+}\))
 - Density measurement
 - Visible: sputtering at divertor plates
 - VUV: influx at SOL
 - EUV: W density at plasma edge
 - X-ray: W density at plasma core
 2. W transport study
 - Calculation of accurate ionization equilibrium
 - Ionization and recombination coefficients

LHD can accept W pellet injection

- Thin W wire in cylindrical carbon or plastic
- W size: 0.03 - 0.2mm\(^2\) in diameter
- W weight: 9.55x10\(^{-3}\) g - 4.25x10\(^{-2}\) g
- W particles (N\(_W\)): 3.13x10\(^{15}\) - 1.39x10\(^{16}\)
- W average density (N\(_W\)/V\(_LHD\)): 1.04x10\(^{17}\) - 4.64x10\(^{17}\) cm\(^{-3}\)
- V\(_LHD\) LHD plasma volume, N\(_W\)/V\(_LHD\)=0.6x10\(^{17}\) cm\(^{-3}\)

Remarkable benefit of LHD for W spectroscopy:
- Discharge can self-recover, even if T\(_e\) is close to zero.
- LHD can produce the brightest W light source.
- W spectra can be measured at a variety of T\(_e\).

W EUV spectra from LHD in 40-140Å

- W spectra observed with 1200g/mm EUV spectrometer (50-500Å).

W EUV spectra from LHD in 10-70Å

- W spectra observed with 2400g/mm EUV spectrometer (10-100Å).

Contents

1. Introduction
2. Specific character of LHD for W spectroscopy
3. W spectroscopy in LHD (10-7000Å)
 2.1 EUV spectra (W\(^{19+}\) - W\(^{45+}\))
 - Analysis with CoBiT spectra
 2.2 VUV spectra (W\(^{6+}\) - W\(^{11+}\))
 2.3 Visible spectra (W\(^{1+}\) - W\(^{11+}\) and M1 W\(^{26+}\))
 4. W density measurement from W\(^{44+}\) and W\(^{45+}\) emissions
 5. Evaluation of ionization & recombination coefficients
 6. Summary

Introduction (II): Max. charge state of W

- LHD (neutral beam injection): T\(_e\)=4keV (max. q: W\(^{45+}\))
- ECH (electron cyclotron heating) T\(_e\)<20keV

ITER (max. q: W\(^{39+}\), W\(^{40+}\))
 - T\(_e\), T\(_{99}\)~10-20keV at n\(_e\)>10\(^{11}\)cm\(^{-3}\)
 (Observation of W\(^{39+}\) & W\(^{40+}\) lines is difficult)

W ion behavior after W pellet injection

- After W pellet injection, higher ionization stages of W ions appear as a function of time.
physica scripta by t. oishi et al.,
results will be soon submitted to

are partially ionized \(W^{27+} \).

spectral lines are visible when 4d electrons are partially ionized \(W^{27+} \).

higher \(T_e \) range

\(E=0.881-2.210 \text{keV} \).

4d-4p transition array: \(W^{27+}, 4s^24p3d^{27} \).

lower \(T_e \) range

\(E=0.503-0.881 \text{keV} \).

4f-4d transition array: \(W^{27+}, 4s^24p3d^{27} \).

extreme low \(T_e \) range

pseudo-continuum from 4f-4d transition.

higher \(T_e \) range

\(E=0.54-1.7 \text{keV} \).

4f-4d transition array: \(W^{27+}, 4s^24p3d^{27} \).

polarization also confirmed m1 line: \(W^{27+}, 4s^24p3d^{27} \).

line identification in visible range (i)

w\(^{19+} , w^{34+} \) in 15-45\(\AA \)

- electron temperature \((T_e) \) dependence of euv spectra from lhd.
- spectral shape changes largely.
- spectra are composed of \(w^{19+} \) to \(w^{34+} \) ions?
- typical spectrum in 15-35a is analyzed based on euv spectra from cobit.
- cobit: compact ebit

line identification in vuv range (i)

- 3m normal incidence vuv spectrometer
- \(d_x/d_x=0.037\text{Å/pixel} = 2.85 \text{ Å/mm} \) ccd: 13um/pixel \(\times 1024 \) pixels
- euv: no w spectrum at just after pellet.

line identification in vuv range (ii)

495-600\(\text{Å} \)

- our identification agrees with nifs database within 0.1\(\text{Å} \).
- w\(^{3}ii \) \((w^{3}) \) is dominant in this wavelength range.

line identification in vuv range (iii)

600-705\(\text{Å} \)

- w\(^{7}i \) \((w^{7}) \) is bright.

line identification in visible range (ii)

705-810\(\text{Å} \)

- \(w^{27} \) \((w^{27}) \) is dominant in this wavelength range.

- \(810-12200 \text{Å} \)
 - \(w \) \((w^{27}) \)
 - \(w\) \((w^{27}) \)

- are dominantly observed.

line identification in visible range (iii)

- \(w^{27} \) m1: \((4f^{2})h_{f}^{-1}h_{i}^{-1} \)
 - centrally peaked profile of visible line confirmed m1 transition

- w\(^{27} \) m1: \((4f^{2})h_{f}^{-1}h_{i}^{-1} \)
 - centrally peaked profile of visible line confirmed m1 transition

- polarization also confirmed m1 line: \(w^{27} \) 6693\(\text{Å} \).

10/25

12/25

14/25

16/25

9/25

13/25

15/25
Line identification in Visible range (II)

- W plate inserted into plasma edge boundary
- W pellet ablation cloud directly observed
- Ablation cloud: T > 16eV, 10^5 cm^-3
- Several lines denoted with arrows are identified by NIST data table
- W line at 4008Å is not strong

W^{44+} & W^{45+} with simple configuration

- W^{44+}: 4sp P\rightarrow 4s^2 4s^2 (60.93 Å)
 4s^2 P\rightarrow 4s^2 4s^2 (60.93 Å)
- W^{45+}: 4p^2 4s S\rightarrow 6s^2 (126.998 Å)
 4s^2 P\rightarrow 4s^2 4s^2 (126.998 Å)

W (Z=74) density measurement

- Configuration with one or two electrons at outer shell possible for n_\text{in}
 measurement

W^{44+} 4s^2 4s^2 60.93 Å

- Density analysis (I): W^{44+} 4s^2 60.93 Å
 - Local impurity density: n_\text{in} is determined by continuity equation in
 cylindrical geometry.
 - Radial impurity flux: \Gamma_\text{in} is expressed by diffusive/convective model.
 - ADPAK original used in the present study.
- Ionization & recombination coefficients necessary for impurity transport code

W (Z=74) density measurement

- Chord-integrated intensity
- Local emissivity

Density analysis (II): W^{45+} 4p-4s 126.998 Å

- W^{45+} 4p-4s 126.998 Å
 - Estimated W^{45+} 4p-4s 126.998 Å density at plasma center is very similar to
 W^{44+} density at 60.93 Å.

Ionization & recombination coefficients evaluation (I)

- From radial profiles
 - Coefficients can be evaluated from radial profiles of W spectrum and T_c.
 - Problems:
 - W spectrum blended with other ions.
 - Difficulty in Abel inversion.
 - Either recombination or ionization is worse?

Ionization & recombination coefficients evaluation (II)

- From time behavior during T_c recovery phase
 - T_c dependence of W^{44+} is analyzed during T_c recovery phase after W pellet
 injection.
 - Peak intensity of W^{44+} is observed at T_c=2.8keV, whereas the peak abundance of
 W^{44+} is predicted at T_c=4.5keV by the impurity transport code calculation.
Summary

- The brightest W light source can be given by LHD plasmas with W pellet injection.
- W spectra have been successfully observed in EUV, VUV and visible ranges.
 (10: EUV: 600 Å, 300: VUV: 3000 Å, 2500: Visible: 7000 Å)
 - EUV spectra identified for W^{19+} - W^{26+} ions
 - UTA spectrum at 15-35 Å is well analyzed with CoBIT spectra.
 - W^{26+} VUV line found as a new tool for W influx measurement
 - Several W and WII spectra identified and compared with NIST data.
 - Several M1 transitions found in visible and VUV ranges, e.g. W^{26+} 3893.7 Å
- W density measurement is attempted for Zn-like W^{44+} and Cu-like W^{45+} ions.
 W^{44+} density is reasonably obtained as n(W^{44+})/n_e = 1.4x10^{-4}.
- W^{44+} and W^{45+} are applicable to W density measurement.
 - Experimental evaluation of ionization and/or recombination rate coefficients is being attempted with two methods;
 - Radial profile measurement of W ion emissions
 - Temporal behavior of W ion emissions during T_e recovery phase
- Collaboration with our data in LHD highly welcomes.