Introduction

How does PWI influence the fusion plasma

- Principle picture

- H (D, T) recycling (implantation & (out-diffusion)) determines the neutral particle dynamics in the SOL.
- Erosion produces plasma impurities that migrate and re-deposit
- Deposition and re-erosion changes impurity source distribution
- Need to include plasma to predict surface evolution

- Subdivide the first wall into N-tiles

- Plasma model [1]:
 - Plasma transport can be characterized by a re-deposition matrix:
 \[
 \frac{\partial n_{\text{ei}}}{\partial t} = \text{Fraction of eroded flux of element ei at charge state qi from wall tile wj that ends up on tile wk}
 \]
- Surface model [1,2]:
 - All erosion & deposition is assumed to occur homogeneously in the reaction zone:
 \[
 \frac{dN}{dt} = \text{Incident flux} \cdot \text{Reflection} \cdot \text{Eroded Flux} \cdot \text{Bulk exchange}
 \]

The WallDYN concept

Linking impurity migration and surface evolution

How does PWI influence the fusion plasma

- Partial erosion yield \(Y_{\text{er}} \)
- Incident particle spectrum \(\Gamma_{\text{in}}(E) \)
- Reflection yield \(R_{\text{refl}} \)
- Incident flux of \(\Gamma_{\text{in}}(E) \)

Surface composition \(\delta_i \) changes due to ero/dep by incident particle spectrum

Changes source distribution

Changes incident spectrum

Linking impurity migration and surface evolution

The WallDYN concept

The WallDYN concept

Summary

Content

Introduction

- How does PWI influence the fusion plasma

Linking impurity migration and surface evolution

- The WallDYN concept
 - Example: Be migration in JET-ILW

A different view on hydrogen diffusion / trapping in metals

- Fill level dependent trapping: From DFT to lab experiments
- Example: Isotope exchange at ambient temperatures

Introduction

How does PWI influence the fusion plasma

- Partial erosion yield \(Y_{\text{er}} \)
- Incident particle spectrum \(\Gamma_{\text{in}}(E) \)
- Reflection yield \(R_{\text{refl}} \)
- Incident flux of \(\Gamma_{\text{in}}(E) \)

Surface composition \(\delta_i \) changes due to ero/dep by incident particle spectrum

Changes source distribution

Changes incident spectrum

Linking impurity migration and surface evolution

The WallDYN concept

Featured content

- Principle picture

- H (D, T) recycling (implantation & (out-diffusion)) determines the neutral particle dynamics in the SOL.
- Erosion produces plasma impurities that migrate and re-deposit
- Deposition and re-erosion changes impurity source distribution
- Need to include plasma to predict surface evolution

- Subdivide the first wall into N-tiles

- Plasma model [1]:
 - Plasma transport can be characterized by a re-deposition matrix:
 \[
 \frac{\partial n_{\text{ei}}}{\partial t} = \text{Fraction of eroded flux of element ei at charge state qi from wall tile wj that ends up on tile wk}
 \]
- Surface model [1,2]:
 - All erosion & deposition is assumed to occur homogeneously in the reaction zone:
 \[
 \frac{dN}{dt} = \text{Incident flux} \cdot \text{Reflection} \cdot \text{Eroded Flux} \cdot \text{Bulk exchange}
 \]

The WallDYN concept

Summary

Content

Introduction

- How does PWI influence the fusion plasma

Linking impurity migration and surface evolution

- The WallDYN concept
 - Example: Be migration in JET-ILW

A different view on hydrogen diffusion / trapping in metals

- Fill level dependent trapping: From DFT to lab experiments
- Example: Isotope exchange at ambient temperatures

Introduction

How does PWI influence the fusion plasma

- Partial erosion yield \(Y_{\text{er}} \)
- Incident particle spectrum \(\Gamma_{\text{in}}(E) \)
- Reflection yield \(R_{\text{refl}} \)
- Incident flux of \(\Gamma_{\text{in}}(E) \)

Surface composition \(\delta_i \) changes due to ero/dep by incident particle spectrum

Changes source distribution

Changes incident spectrum

Linking impurity migration and surface evolution

The WallDYN concept

Featured content

- Principle picture

- H (D, T) recycling (implantation & (out-diffusion)) determines the neutral particle dynamics in the SOL.
- Erosion produces plasma impurities that migrate and re-deposit
- Deposition and re-erosion changes impurity source distribution
- Need to include plasma to predict surface evolution

- Subdivide the first wall into N-tiles

- Plasma model [1]:
 - Plasma transport can be characterized by a re-deposition matrix:
 \[
 \frac{\partial n_{\text{ei}}}{\partial t} = \text{Fraction of eroded flux of element ei at charge state qi from wall tile wj that ends up on tile wk}
 \]
- Surface model [1,2]:
 - All erosion & deposition is assumed to occur homogeneously in the reaction zone:
 \[
 \frac{dN}{dt} = \text{Incident flux} \cdot \text{Reflection} \cdot \text{Eroded Flux} \cdot \text{Bulk exchange}
 \]

The WallDYN concept

Summary

Content

Introduction

- How does PWI influence the fusion plasma

Linking impurity migration and surface evolution

- The WallDYN concept
 - Example: Be migration in JET-ILW

A different view on hydrogen diffusion / trapping in metals

- Fill level dependent trapping: From DFT to lab experiments
- Example: Isotope exchange at ambient temperatures

Introduction

How does PWI influence the fusion plasma

- Partial erosion yield \(Y_{\text{er}} \)
- Incident particle spectrum \(\Gamma_{\text{in}}(E) \)
- Reflection yield \(R_{\text{refl}} \)
- Incident flux of \(\Gamma_{\text{in}}(E) \)

Surface composition \(\delta_i \) changes due to ero/dep by incident particle spectrum

Changes source distribution

Changes incident spectrum

Linking impurity migration and surface evolution

The WallDYN concept

Featured content

- Principle picture

- H (D, T) recycling (implantation & (out-diffusion)) determines the neutral particle dynamics in the SOL.
- Erosion produces plasma impurities that migrate and re-deposit
- Deposition and re-erosion changes impurity source distribution
- Need to include plasma to predict surface evolution

- Subdivide the first wall into N-tiles

- Plasma model [1]:
 - Plasma transport can be characterized by a re-deposition matrix:
 \[
 \frac{\partial n_{\text{ei}}}{\partial t} = \text{Fraction of eroded flux of element ei at charge state qi from wall tile wj that ends up on tile wk}
 \]
- Surface model [1,2]:
 - All erosion & deposition is assumed to occur homogeneously in the reaction zone:
 \[
 \frac{dN}{dt} = \text{Incident flux} \cdot \text{Reflection} \cdot \text{Eroded Flux} \cdot \text{Bulk exchange}
 \]

The WallDYN concept

Summary

Content

Introduction

- How does PWI influence the fusion plasma

Linking impurity migration and surface evolution

- The WallDYN concept
 - Example: Be migration in JET-ILW

A different view on hydrogen diffusion / trapping in metals

- Fill level dependent trapping: From DFT to lab experiments
- Example: Isotope exchange at ambient temperatures

Introduction

How does PWI influence the fusion plasma

- Partial erosion yield \(Y_{\text{er}} \)
- Incident particle spectrum \(\Gamma_{\text{in}}(E) \)
- Reflection yield \(R_{\text{refl}} \)
- Incident flux of \(\Gamma_{\text{in}}(E) \)

Surface composition \(\delta_i \) changes due to ero/dep by incident particle spectrum

Changes source distribution

Changes incident spectrum

Linking impurity migration and surface evolution

The WallDYN concept

Featured content

- Principle picture

- H (D, T) recycling (implantation & (out-diffusion)) determines the neutral particle dynamics in the SOL.
- Erosion produces plasma impurities that migrate and re-deposit
- Deposition and re-erosion changes impurity source distribution
- Need to include plasma to predict surface evolution

- Subdivide the first wall into N-tiles

- Plasma model [1]:
 - Plasma transport can be characterized by a re-deposition matrix:
 \[
 \frac{\partial n_{\text{ei}}}{\partial t} = \text{Fraction of eroded flux of element ei at charge state qi from wall tile wj that ends up on tile wk}
 \]
- Surface model [1,2]:
 - All erosion & deposition is assumed to occur homogeneously in the reaction zone:
 \[
 \frac{dN}{dt} = \text{Incident flux} \cdot \text{Reflection} \cdot \text{Eroded Flux} \cdot \text{Bulk exchange}
 \]
Linking impurity migration and surface evolution
The WallDYN concept

- Main features
 - Non iterative merge of global impurity transport (DIVIMP) with surface models (Sputtering, Chemical erosion, Sublimation, Seeding...)
 - Includes re-erosion of deposited material
 - Maintains a strict global material balance

- Implementation
 - Use continuous description of surface and plasma flux evolution using ODE's and AE's
 - Yields a DAE system that allows to truly couple different physical processes
 - Solved using an implicit BDF solver

- Advantage over iteratively coupling MC, MD or DFT codes
 - Iterative coupling occurs on different time scales
 - Error propagation during iterative coupling
 - Sampling artefacts in MC-based codes
 - Last but not least: Computation time

Linking impurity migration and surface evolution
Example: Be migration in JET-ILW [2]

- Be influx and deposition during L-Mode divertor phase JET-ILW 80295
 - WallDYN calculates evolution of Be influx and Be deposition
 - Be deposition pattern in excellent agreement with literature [1]
 - Be influx does not mean deposition
 - Erosion source strength + plasma transport are not enough to predict deposition
 - Need to include the entire transport chain

Linking impurity migration and surface evolution
Example: Be migration in JET-ILW

- H-Mode JET-C
 - O/X ratios based on post mortem analysis
 - Must include long term outgassing
 - JET-ILW:
 - Outgassing was measured
 - C-JET:
 - Gas balance/post mortem = 1/5
 - JET-ILW:
 - O/Be at tile 1, Apron 3 to 4%
 - O/Be in remote areas 40%
 - C-JET:
 - O/C = 40% at base temp.
 - O/C = 5% at high temp.

- WallDYN matches experiment if long term outgassing is taken into account

Linking impurity migration and surface evolution
The WallDYN concept

- Input into the WallDYN surface model:
 - Mixed material sputter yields \(Y_{i,j,k} = \left\{ \frac{d}{dt} N_{i,k} \right\} \)
 - Depends on all elements in the mixture, Energy, angle and temperature
 - Taken from SDTRIM.SP parameter scan, Experiment, MD...
 - Reflection yield of projectiles from mixed materials \(R_{i,j,k} \)
 - Depends on all elements in the mixture, Energy, angle
 - Taken from dynamic TRIM, Experiment, MD...

- WallDYN is a non iterative continuous code
 - Analytic expression required
 - Fit scaling laws to reflection and sputter yield data

- Example Be data for a Be, C, W mixture
 - Reasonable fit to database

Linking impurity migration and surface evolution
The WallDYN concept

- Input into the WallDYN plasma migration model:
 - Redistribution matrix
 \(\phi_{ijk} = \text{Fraction of eroded flux of element } i \text{ at charge state } j \text{ from wall tile } vj \text{ that ends up on tile } wk \)
 - Calculated by trace impurity code DIVIMP
 - Example: charge state integrated Be redistribution matrix
 - Diagonal points towards strong local re-dep
 - Plasma flows point towards inner divertor
 - Strong deposition on baffles
A different view on hydrogen diffusion / trapping in metals

Fill level dependent trapping: From DFT to lab experiments

- Classic diffusion/trapping picture of H in metals
- Two populations:
 - Solute
 - Trapped at trap type 1
- H is transported via solute diffusion
- Traps have single occupancy & fixed de-trapping energy
- At low temperature the traps are frozen
- Once all traps are filled they no longer interact with the solute at low T

![Diagram showing energy levels and trapping](image)

K. Schmid | IAEA Technical Meeting, Daejeon Korea December 2014 | Page 13

A different view on hydrogen diffusion / trapping in metals

Fill level dependent trapping: From DFT to lab experiments

- The classic diffusion trapping picture fails to explain low temperature isotope exchange experiments
 - The initial D implantation is well reproduced by the classic model
 - BUT since all traps are frozen there is no isotope exchange in the classic model
- Apparently the classic model does not correctly describe the trapping/detrapping dynamics

![Diagram showing experimental data](image)

K. Schmid | IAEA Technical Meeting, Daejeon Korea December 2014 | Page 14

A different view on hydrogen diffusion / trapping in metals

Fill level dependent trapping: From DFT to lab experiments

- DFT (e.g. 1) predicts that defects can store multiple H atoms (e.g. 6 in one mono-vacancy)
 - The de-trapping energy depends on the fill level of the trap
 - (De-) trapping changes the trap energy for all H in a trap
 - (De-) trapping of one H can modify the binding energy of many other H

![Diagram showing trapping energy changes](image)

K. Schmid | IAEA Technical Meeting, Daejeon Korea December 2014 | Page 15

A different view on hydrogen diffusion / trapping in metals

Fill level dependent trapping: From DFT to lab experiments

- Isotope exchange with fill level dependent trapping: Experiment vs. New Model
 - With DFT data for mono vacancies isotope exchange "too efficient"
 - BUT model can in principle match data
 - Ad-Hoc fit with two, two level trap types
 - Trap type 1: D flux (m-2s-1)
 - Trap type 2: D flux (m-2s-1)
 - Trap type 1: D flux (m-2s-1)
 - Trap type 2: D flux (m-2s-1)

![Diagram showing isotope exchange](image)

K. Schmid | IAEA Technical Meeting, Daejeon Korea December 2014 | Page 16
Summary

- WallDYN allows to couple surface process data from different source to plasma transport
- WallDYN calculates global impurity migration, erosion, layer deposition and co-deposition
- WallDYN tracks the entire erosion/migration/deposition/re-erosion chain
 - Main input: mixed material sputter and reflection yields
 - Currently taken from dynamic TRIM (calculations)
- The classic Diff./Trapp. model does not correctly describe the trapping/detrapping dynamics
- DFT predicted fill level dependence can explain low temperature isotope exchange
- New rate equation model allows to test DFT predictions against experimental data
- Classic Diff./Trapp & fill level dependent model indiscernable in mono-isotopic case
 - Main input: fill level dependent detrapping energies
 - Currently only available for monovacancies from DFT
 - Maybe use MD for extended defects?

Discussion slides

Isotope exchange case

- Depth profiles at t = 100sec (End of Iso-A implantation)
- Depth profiles at t = 900sec (Just before Iso-B implantation)
Isotope exchange case

Depth profiles at $t = 1000\text{sec}$ (Start of Iso-B implantation)

- Occ. Dep.
- Classic.

©K. Schmid Sept. 2014

Depth profiles at $t = 1100\text{sec}$ (100 sec of Iso-B implantation)

- Occ. Dep.
- Classic.

©K. Schmid Sept. 2014

Depth profiles at $t = 2000\text{sec}$ (1000 sec of Iso-B implantation)

- Occ. Dep.
- Classic.

©K. Schmid Sept. 2014

<table>
<thead>
<tr>
<th>Time (sec)</th>
<th>Total amount (μm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>106</td>
</tr>
<tr>
<td>2000</td>
<td>107</td>
</tr>
<tr>
<td>4000</td>
<td>108</td>
</tr>
<tr>
<td>6000</td>
<td>109</td>
</tr>
<tr>
<td>8000</td>
<td>1010</td>
</tr>
<tr>
<td>10000</td>
<td>1011</td>
</tr>
</tbody>
</table>

Factor ~0.8

Factor ~10

Depends on trap energies!

©K. Schmid Sept. 2014