CHIANTI
An atomic database for astrophysical plasmas

Enrico Landi
University of Michigan

On behalf of the CHIANTI team:

Enrico Landi
University of Michigan, USA
Ken Dere
George Mason University, USA
Peter Young
George Mason University, USA
Giulio Del Zanna
University of Cambridge, UK
Helen Mason
University of Cambridge, UK
Overview

A – Background

B – The CHIANTI database

C – Data benchmarking for CHIANTI

D – Future CHIANTI work
CHIANTI was born within the solar spectroscopy community in the early 1990s

1 - Need of a large amount of atomic data

2 - New X-ray, EUV, UV instruments were launched

3 - Number of users was increasing
Before CHIANTI, each scientist had to look for the atomic data he/she needed in the literature.

This process was inefficient.

- **Selection:**
 - Not atomic physics experts
 - Disconnection between solar and atomic physics communities

- **Implementation:**
 - Very time consuming
 - Software duplication

- **Results**
 - Comparison between results from different authors was also dependent on the atomic data used
Background (III)

Only a few databases were known to solar physicists:

- MEKAL (Nederlands)
- ADAS (UK)
- Arcetri Spectral Code (Italy)
- Raymond & Smith (USA)

They all had some limitations:

- Line intensity calculation
- Data handling/user friendliness/software were in their infancy
- Limited interaction with new space missions
Requirements of a database

In order to be suitable for the analysis of modern high-resolution spectra, atomic databases need to

- be complete
- be accurate
- be user friendly
- be transparent
- no lines left behind
- plasma diagnostics must not be hindered by
 - atomic physics uncertainties
 - approximation in line intensity calculation
- the user can independently check the original data and their accuracy
- no black box
- all data independently refereed in peer reviewed literature

Also, atomic data and predicted emissivities from databases need to be benchmarked against observations.
B - The CHIANTI database

CHIANTI was developed in order to meet these needs, AND:

- Be compact
- Be freely available

CHIANTI is a complete spectral code:

<table>
<thead>
<tr>
<th>Database</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Includes 280+ ions</td>
<td>- Plasma diagnostics</td>
</tr>
<tr>
<td>- Atomic data:</td>
<td>- Synthetic spectrum calculation</td>
</tr>
<tr>
<td>Energy levels</td>
<td></td>
</tr>
<tr>
<td>A values</td>
<td>- Data handling software</td>
</tr>
<tr>
<td>- Electron/proton-ion collision data</td>
<td></td>
</tr>
<tr>
<td>- Continuum calculation data</td>
<td></td>
</tr>
<tr>
<td>- Ionization/recombination data</td>
<td></td>
</tr>
</tbody>
</table>
The CHIANTI database (II)

CHIANTI includes the following processes:

- Electron and proton collision excitation
- Photoexcitation
- Innershell and dielectronic satellite lines
- Recombination into excited levels
- Ionization and recombination rates

CHIANTI collision data are scaled and stored

- Very compact database
- No loss of accuracy

CHIANTI spectral range:

- Primary range: 1-2000 A
- Useable range: Any spectral line beyond 2000 A emitted by ions in CHIANTI
The CHIANTI database (III)

CHIANTI data are:

- In ASCII format
- Selected from the refereed literature
- Critically assessed and evaluated
- With references to original literature

CHIANTI is completely transparent to the end user

- FREELY available on the web at
 http://www.chiantidatabase.org

- Fully documented through user guides

CHIANTI also provides:

- a mailing list
- Email assistance to users at:
 chianti_help@halcyon.nrl.navy.mil
CHIANTI diffusion

CHIANTI is the standard, reference database for solar physics

CHIANTI spread well beyond solar physics:

- **Solar system objects** (planets, asteroids, comets)
- **Interstellar medium**
- **Stellar physics** (solar-type, O-type, binary, symbiotic etc)
- **Stellar evolution** (protostellar disks and jets, T-Tauri stars, novae, planetary nebulae, white dwarfs, neutron stars, supernovae)
- **Extragalactic astronomy** (AGN, quasars, Seyfert galaxies, galaxy clusters, primordial metallicity)
- **Atomic physics** (data benchmark, new calculations, laboratory astrophysics)

Most common uses:

- Plasma diagnostics
- Radiative loss calculation
- Time-dependent effects
- Line identification
CHIANTI diffusion (II)

Space missions using CHIANTI data:

SOHO SDO
Yohkoh GOES
TRACE RHESSI
SECCHI RESIK
Hinode SPHINX

Other databases and software packages use CHIANTI:

APEC/APED
XSTAR
HAOS-DIPER
PANDORA
PintOfAle
CHIANTI was developed in order to provide a database that was:

- Complete
- Accurate

Completeness and accuracy:

These two characteristics are linked
To achieve them, we continuously

1. Assess data before including them in CHIANTI
2. Compare CHIANTI predictions with observations
Before including data in CHIANTI

All CHIANTI data are critically assessed and evaluated before being inserted into CHIANTI

The main data included in CHIANTI are:

<table>
<thead>
<tr>
<th></th>
<th>Observed</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy levels</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Radiative data</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Electron-ion excitation</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Proton-ion excitation</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ionization rate coefficients</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Recombination rate coefficients</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Before including data in CHIANTI (II)

Energy levels

Review all laboratory, solar and stellar observations
Measure level energies
Associate them to levels in CHIANTI models

Example: Fe VIII
Before including data in CHIANTI (III)

Radiative rates

- Mostly from calculations
- Compare with few available measurements

Radiative rate
Level lifetime

Example: Ca IX

![Graph showing the relationship between observed and calculated level lifetimes across different calculations. The x-axis represents different calculations, and the y-axis shows the level lifetime ratio. The graph includes error bars for each data point.]
Before including data in CHIANTI (IV)

Radiative rates, energy levels, wavelengths

Compare among different calculations

Atomic model completeness
Approximation used
“Stability” of results against model changes
Before including data in CHIANTI (V)

Electron ion collision excitation rate coefficients

- Review all existing calculations
- Compare atomic model completeness
- Compare calculation method
 - R-Matrix, Distorted Wave, etc
 - relativistic, semi-relativistic, etc
- Check high energy behavior
After including data in CHIANTI

There are two main benchmarks:

Completeness
Accuracy

We have steadily compared CHIANTI spectra with

High resolution solar and stellar spectra
High resolution laboratory spectra

In each comparison, we

Determine areas of strength
Determine areas of weakness

Address weaknesses in a new CHIANTI version
<table>
<thead>
<tr>
<th>Version</th>
<th>Instrument</th>
<th>Wvl. Range</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>SERTS</td>
<td>170-450 A</td>
<td>V2 release (minor ions, improved data)</td>
</tr>
<tr>
<td>V3</td>
<td>CDS</td>
<td>308-630 A</td>
<td>V4 release (proton excitation rates, improved data)</td>
</tr>
<tr>
<td></td>
<td>SUMER</td>
<td>500-1600 A</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>SMM/FCS</td>
<td>7-20 A</td>
<td>V5 release (X-ray Fe data)</td>
</tr>
<tr>
<td></td>
<td>RESIK</td>
<td>3-8 A</td>
<td></td>
</tr>
<tr>
<td>V5,V6</td>
<td>EIS</td>
<td>170-292 A</td>
<td>Fe VIII-XIV (new data development)</td>
</tr>
<tr>
<td>V7</td>
<td>Chandra</td>
<td>10-170 A</td>
<td>V7.1 release (Fe soft X-ray data)</td>
</tr>
</tbody>
</table>
After including data in CHIANTI (III)

Example: EUV line identification

- Comparison of CHIANTI V6 with solar spectra of cool bright point:

 - Instrument: Hinode/EIS
 - Wavelength range: 170-292 Å

- Results:

 - New line identifications for Fe VIII and IX
 - Important for diagnostics of the solar corona
After including data in CHIANTI (IV)

Example: X-ray spectrum completeness

- Comparison of CHIANTI V.4 with solar flare spectrum

 - Instrument: SMM/FCS
 - Wavelength range: 7-20 A

- Results:
 - Excellent agreement (within 30%) above 12 A
 - Incomplete data for Fe XVII-XXIII below 12 A
 - New calculations performed by CHIANTI team
After including data in CHIANTI (V)

Example: Density diagnostics with Fe XII and XIII

Fe XII and XIII lines:
- Amongst the brightest in the solar coronal spectrum
- Best density-sensitive intensity ratios
- Long-standing discrepancy

New calculations performed by the CHIANTI team

Agreement, at last!!
After including data in CHIANTI (VI)

Example: 20-170 Å wavelength range

- This range includes two channels of SDO/AIA
- These two channels are key to understand solar coronal heating
- Available CHIANTI V.6 were incomplete
After including data in CHIANI (VII)

- Solution:
 - New CHIANI calculations
 - Comparison with Chandra spectrum
Overall assessment

Overall CHIANTI assessment after 17 years:

- Overall excellent agreement
- A few areas where problems were present
 - Missing data
 - Incorrect or missing line identifications
 - Low quality data

Comparison with observations has led to

- A very complete and accurate database
- Close interaction with atomic physics community
 - New data calculations

The CHIANTI project has resulted in great advances for the field of atomic astrophysics
Future work

CHIANTI is still in need of a lot of work

Adding new data

- Improve the soft X-ray range
- Improve identification in the UV range
- Include data from lab measurements
- Extend to low ionization species

Change of CHIANTI format

- Improve accuracy of collision data stored in the data base
- Increase number of levels n CHIANTI ions to more than 1000
Backup slides
Line intensity calculation:

They mostly relied on the “Coronal Model Approximation”:

- Electron collision excitation from ground level only
- Radiative de-excitation

Some of them used Gaunt factors rather than original calculations of electron-ion collision strengths

- Database was smaller
- Computation time was faster

Comparison of data with observations was limited