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Modeling Long-Distance Transport  
of Carbon and Beryllium  
in an ITER edge Plasma 
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Model geometry of edge plasma and walls 

Plasma parameters in an ITER edge plasma with D 
and impurities (C and He) are taken from a 
B2/Eirene calculation [1].  

[1] G.Federici et al., J.Nucl.Mater.290-293(2001)260. 

Aside from sputtering by plasma ions, sputtering by charge 
exchange (CX) neutrals is taken into account at the first 
wall. 
 

Physical sputtering yield of C target in the divertor 
and Be first wall is calculated by using EDDY [2].  

[2] K.Ohya, Phys.Scr. T124 (2006)70. 

Due to high threshold energy for physical sputtering by D 
ions, sputtering of W baffle and dome is not taken into 
account.  
 

Chemical sputtering of C target is calculated using 
Roth formulae [3]. Only CD4 molecules are released 
from the target.  
[3] J.Roth et al., J.Nucl.Mater. 266-269(1999)1/337-339(2005)970. 

 

Detailed description of impurity transport model is 
presented in ref. [4]. 

[4] K.Ohya et al., Phys.Scr. T138(2010)014010.  
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Flux and energy of ions and CX neutrals 
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First wall Target DomeFirst wallTargetDome

Inner region Outer region
Poloidal distributions of the flux of CX neutrals 
and of their mean energy along the grid edge 
are taken from ref. [5]. 

[5] R.Behrisch et al., J.Nucl.Mater. 313-316(2003)338. 

 
Angular distribution of ions is influenced by 
gyro-motion of the ions; most probable angles 
of the distribution are 12o~18o, which are much 
larger than the magnetic angles intersecting 
the wall.  
 
Average angle of magnetic field lines 
intersecting the first wall equipped with 
blanket modules is chosen to be 5o, which 
results in an incident angle of ~21o to the first 
wall.  
 
Ion flux at the first wall is assumed to decay 
exponentially from the grid edge to the wall. 
The decay length is taken to be 1 cm, 3 cm and 
10 cm. 
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C, CD4 and Be fluxes eroded from walls 
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Inner region Outer region Dominant erosion mechanism at the outer 
divertor target is physical sputtering. 
Asymmetric erosion between the inner and 
outer targets is observed, depending on the 
incident ion energy.  
 
Erosion of the inner target is dominated by 
chemical sputtering, a maximum yield of 
which occurs at the strike point.  
 
Erosion of the first wall is at least by factors of 
10 ς 100 smaller than that of the divertor 
targets. Localized gas puffing and recycling at 
the top of the first wall causes sputtering flux 
to be strongly decreased. 

If decay length of ion flux between the grid edge and the first wall is taken to be 10 cm, 
the sputtering flux by ions is high enough to be comparable to the flux by CX neutrals.  
With decreasing length, the ion flux is strongly reduced, showing complicated profile 
closely related to the local distance between the grid edge and the first wall.  
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C, CDy and Be distributions in edge plasma 
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A part of C atoms is promptly ionized and redeposit in the vicinity of the birthplace. The 
other part is transported away from it and some of them distribute out of the divertor.   
 

CDy is rather limited within the private flux region (PFR) of the divertor.  
 

Be atoms are ionized and subsequently transported along the magnetic field lines for a 
long distance, therefore, they distribute over the whole area of the machine.  

The color represents 
the sum of the flight 
time of all particles 
traveling in each grid 
cell, per unit area in the 
poloidal cross-section. 
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C, Dy and Be redeposition profiles 
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C atoms produce a very sharp profile on 
the outer target.  
 
CD4 eroded from the position near the 
strike point produces a pronounced 
redeposition of neutral CDy directly on the 
dome.  
 
Be redeposition in the divertor occurs 
rather more at the inner target.  

     The asymmetric redeposition between 
the inner and outer divertor targets was 
found in ref. [6]. 

[6] K.Schmid, Nucl.Fusion 48(2008)105004.  

Be redeposition on the first wall is more in 
the outer side of the top of the first wall.  
 
Be redeposition flux on the first wall by a 
factor of 10 smaller than the flux 
redeposited on the inner divertor target. 
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Net erosion and deposition profiles 
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Physical and chemical sputtering yields of 
original materials are used for the re-erosion 
yields for C (CDy) and Be deposits.  
     Net erosion and deposition profiles of C, 
CDy and Be, calculated as the flux difference 
between redeposition and re-erosion.  
 
C deposits in the inner divertor are strongly 
re-eroded except for the dome where 
sputtering is negligibly small.  
     Position near the strike point, as well as 
the dome, is a deposition zone whereas the 
position far from it is an erosion zone.  
 
Be deposits on the inner and outer targets 
are strongly re-eroded due to low threshold 
energy for physical sputtering.  
     The top of the first wall and the inner 
dome are deposition zones.  
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Tritium codeposition profile on walls 

Empirical formulae recently proposed by 
Doerner et al. [6] are used for atomic ratios 
of D to C and of D to Be.  

[6] R.P.Doerner et al., Nucl.Fusion 49(2009)035002. 

(The estimation of T retention, 
corresponding D data, are performed in this 
work.)  
 
Using surface temperature and D energy on 
the inner and outer targets and the first wall, 
D/C and D/Be values are calculated as a 
function of the position.  
 
Net redeposition flux profiles are multiplied 
with D/C and D/Be profiles to obtain T 
codeposition profile. 
 
Finally, assuming toroidal symmetry, total 
retention rate can be estimated from the 
calculated T codeposition profile.  
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Tritium retention rate in C and Be deposits 

Dominant T retention in C occurs at the inner and outer divertor target, whereas it occurs at 
the first wall.  
Retention rate in Be is strongly influenced by decay length of plasma parameters from the 
grid edge to the first wall.  
 
Using a discharge duration of 400 s, the number of discharge after which an in-vessel T 
safety limit of 700 g is reached are estimated from the sum of the T retention rate in C and 
Be deposits, if the retention rate in W is negligibly low.  
It is predicted to be 295 ς 395 discharges, depending on the decay length.  

Decay length
*1 First wall Total

(cm) Inner target dome Outer target 

(a) Carbon deposition

1.26 0.01 2.51 0.12 3.89

(b) Beryllium deposition

1 0.06 0.03 0 0.48 0.58

3 0.06 0.04 0 0.60 0.70

10 0.03 0.14 0 1.48 1.65

Divertor
*2

[mgT/s] [mgT/s] [mgT/s][mgT/s] [mgT/s]

Decay length
*1 First wall Total

(cm) Inner target dome Outer target 

(a) Carbon deposition

1.26 0.01 2.51 0.12 3.89

(b) Beryllium deposition

1 0.06 0.03 0 0.48 0.58

3 0.06 0.04 0 0.60 0.70

10 0.03 0.14 0 1.48 1.65

Divertor
*2

[mgT/s] [mgT/s] [mgT/s][mgT/s] [mgT/s]
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To predict tritium (T) retention in ITER wall components, an erosion and redeposition 
modeling of divertor targets (CFC) and a first wall (Be) is performed for an ITER edge 
plasma configurations.  
 
(1) Position near the strike point on the outer target is a deposition zone whereas 
position far from it is an erosion zone due to physical sputtering.  
 
(2) CDy eroded through chemical sputtering produces its pronounced redeposition 
on the dome.  
 
(3) Erosion of the first wall is strongly influenced by a decay length of local plasma 
parameters from the plasma edge to the wall.   
Eroded Be atoms distribute over the whole area of the machine, resulting in an influx 
of Be to the divertor.  
 
(4) T retention is dominated by C deposition on the inner and outer targets.  
Be deposition less contribute it, most of which occurs on the first wall.  
Total retention rate limits 295ς395 discharges before T limit of 700 g is reached. 

Conclusions (1) 
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Modeling Tritium Retention in 
Tungsten Divertor Targets of ITER 
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(a) Diffusion
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(b) Surface recombination

Parameter Fitting with a TDS experiment 

In the experiment [1], a wrought W surface was irradiated 
by D3

+ ions with an energy of 100 eV/D and a flux of 
2.5× 1015 cm-2s-1. [1] C.Garcia-Rosales et al., J.Nucl.Mater.233-
237(1996)803. 

Time evolution of the areal density of trapped 
D in W is shown along with that of the density 

retained as mobile atoms.  

Density of mobile and trapped D atoms increases 
successively during implantation. 
       After implantation, a part of mobile D atoms are 
released due to surface recombination. Trapped D atoms 
are kept to be retained in the bulk.  
       At the early stage of the TDS phase, D atoms in the 
Trap 1 are released via mobile D atoms. At the delayed 
stage , D atoms in the deeper trap (Trap 2) are released.  



19 

Incident energy (T), angle (b) and flux (G) and 
target temperature (Ttar) as a function of the 
position on the inner and outer target. 
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Plasma Parameters used for calculation 

The plasma parameters in front of the targets are taken 
from a B2-EIRENE calculation [2], as a function of the 
distance from the strike point.  
          [2] G.Federici et al., J.Nucl.Mater.290-293(2001)260. 

 
The surface temperature depending on the position on 
the target is taken from [3], where the temperature were 
calculated assuming CFC, not W, with the thickness of 10 
mm. [3] G.Federici et al., Plasma Phys. Control.Fus.45(2003)1523. 

 
Typical duration of a discharge in ITER is 400 s. The surface 
temperature at each position is kept constant after 
discharge as well as during it. 
 
The trap concentration strongly depends on the material 
and additional traps may be produced in the near-surface 
region due to high D fluxes to the target, resulting in a 
depth-dependent concentration. 
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Incidence at Low energy and Shallow Angles 

Angular distribution of the ions is calculated at 
different magnetic field angles using a particle-
in-cell simulation [5]. 
[5] K. Inai et al., J. Plasma Fusion Res. Ser. 8, 433 (2009). 

The average angle of the distribution is used as 
incident angle, 12° ~18° , depending on the 
magnetic angle, at each position on the target.  

Sticking coefficient calculated using a molecular 
dynamics simulation [4], where the incident angle 
is 75° . [4] K. Ohya et al., J. Nucl. Mater. 417, 637 (2011). 

In the relevant energy range, the sticking 
coefficient, slightly depending on the surface 
temperature, is assumed to be 0.01 for the 
calculation of the implantation flux.   
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At the position where the temperature is high, the number of retained D atoms increases without any 
saturation. Most of D atoms are retained as mobile atoms. 
 At the low temperature position, it tends to saturate where most of trap sites near the surface are 
occupied by implanted D atoms.  
After discharge (>400 s), most of D atoms are kept to be retained in the bulk, where they can diffuse 
deeper.  

Time evolution of retained D distribution 
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The number of retained D atoms at the position 
with low temperature strongly depends on the 
trap concentration in W.  
 
 
 
At the position with high temperature, a weaker 
dependence is obtained due to dominant 
retention of mobile atoms. 
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Trap concentration dependence of Deuterium 
Retention 

Retained distributions of D atoms along the inner and outer targets (a) just after a 
discharge (400 s) and (b)subsequently after it (1000 s).  
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Time evolution of Tritium Retention in Targets 
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From the distribution of retained D atoms during and after discharge, the T retention in 
the inner and outer targets are estimated by taking the atomic mass difference between D 
and T into account, and assuming toroidal symmetry.  

In case of the inner target, dominant retention 
mechanism is the trapping in the deep trap (Trap 
2) during discharge and most of the T atoms are 
kept in the trap even after discharge.  
 
Mobile T atoms dominate the T retention in the 
outer target due to its high temperature leading to 
detrapping from the trap and subsequent 
diffusion inside the bulk.  
 
 
The T atoms are retained ten times more in the 
outer target than in the inner target during 
discharge, whereas sufficiently after discharge the 
T retention is reduced due to surface 
recombination of mobile atoms. 
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T retention is dominated by mobile atoms in the outer target decreasing with time after a discharge, 
whereas in the inner target it is strongly enhanced due to an increase in the trap concentration.  
 
Finally, the number of discharges, after which an in-vessel T safety limit of 700 g is reached, is 
estimated from the sum of T retention of the inner and outer targets; T retention in other walls is not 
taken into account. 

Tritium Retention in Divertor Targets 

Trap concentration Total

Ttrap/W Inner target Outer target 

(a) Just after discharge (400 s)

0.01 10.8 47.3 58.0

0.001 2.6 31.1 33.7

0.0001 1.0 28.5 29.6

(b) Subsequently after discharge (1000 s)

0.01 8.5 23.4 31.90

0.001 2.0 12.8 14.90

0.0001 0.6 11.1 11.70

Tritium retention (mgT) after a discharge (400 s) in tunsgten.

Divertor

The number of discharges is of the range between 12000 and 24000, depending on the trap 
concentration from 0.01 to 0.0001. It is increased to the values between 22000 and 60000, if the T 
retention sufficiently after discharge (1000 s) is used. 
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(1)Dominant retention mechanism for the inner target is the trapping in the 
     deep trap and most of the retained T atoms are kept in the trap even after 

discharge.  
(2) Mobile T atoms dominate the T retention in the outer target due to its high 

temperature, leading to detrapping from the trap and subsequent diffusion 
inside the bulk.  

(3) The T retention after a discharge duration of 400 s is estimated to be tens of mg, 
strongly depending on the trap concentration in the bulk. It results in 104 
discharges or more after which a T safety limit of 700 g is reached. It indicates 
that the T retention in a W target is about two orders of magnitude smaller 
than that for a CFC target.  

 
     Nevertheless, Be used for the first wall is strongly eroded due to its low surface 

binding energy and a portion of eroded Be atoms migrates towards the divertor 
targets, although most of atoms redeposit on the other areas of the first wall.  

          Codeposition mechanism for the Be deposits may dominate the T retention in 
the W target in both inner and outer regions. 

Conclusions (2) 
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Molecular Dynamics Study of 

Hydrogen Interaction of  

Carbon and Beryllium Deposits 
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(1) Erosion of plasma facing walls ---> Reduced life time of wall material 
 
(2) Transport of eroded impurities in plasmas 
                           ---> Fuel dilution and radiation cooling of core plasma 
(3) Redeposition of eroded particles 

            ---> Tritium retention  in redeposited layers and materials mixing  

Computer simulation of such erosion and redeposition    

(1) transport of eroded impurities in edge plasmas, and 

(2) surface interactions of hydrogen and eroded impurities. 

Molecular dynamics (MD) simulation is used for  

     Local interactions of hydrogen isotopes with C, Be and W, and 

    preparation of deposited C and material mixed layers formed on them.  

Main purpose is to study  

 ñrealistic plasma surface interactions in fusion devicesò 

requires: 

Plasma Surface Interaction in Fusion devices 
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Coupling to an external bath (e.g., Langevin eq.) 

Periodic boundary condition (cell sides) 

Integrating equation of motions of constituent atoms 

The force on each atom calculated from the analytical derivation of appropriate 
interaction potential form. 

: Small cell,       

   103 -107 atoms 

: Excess heat dissipation 

in collisions with 

energetic atom 
: Top most atoms are free,  

but bottom most atoms are fixed. 

C-C, C-H : Brenner (1990, 1992), REBO (2002) and AIREBO (2000) 
W-W, W-C, W-H : Juslin, Nordlund et al. (2005) 

Be-Be, Be-C, Be-H, Be-W : Bjorkas, Nordlund et al. (2009/2010) 

Fusion-related parameter sets for  
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Classical molecular dynamics (MD) codes  
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Carbon fluence 

E=100eV 

E=1keV 

űC=1× 1020 m-2 

(N=1000) 

3× 1020 m-2 (N=3000) 5× 1020 m-2 (N=5000) 

Erosion and Carbon Deposition on Tungsten 


