Ab Initio Studies of the Collisions Involving Lanthanide Atoms and Ions

Alexei A. Buchachenko
Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3 Moscow 143026 Russia
E-mail: alexei.buchachenko@gmail.com, a.buchachenko@skoltech.ru

It turns out that the bare lanthanide atoms and ions has got rapid promotion their bottom obscure period to the forefront of cold atomic and molecular physics research

Theoretical A&M physics perspectives: Sensitive probe for

Ab initio methods for interaction potentials, spin-orbit couplings, transition moments and non-adiabatic matrix elements: from 10^-6 to a few cm^-1 on energy scale

Buffer gas cooling and magnetic trapping of the Tm atom
\[\gamma \text{ - ratio of elastic to inelastic collision rates for } M + He \text{ collisions} \]

Inelastic: transitions between Zeeman sublevels, driven by interaction anisotropy, or splitting between \(\Lambda \) (or \(\Omega \)) projections of the electronic orbital \(L \) (or total \(J \)) angular momentum on the molecular axis

\[\text{Tm}(^4) \Rightarrow \text{TmHe} (^{2}\Sigma,^{2}\Gamma,^{2}\Delta,^{2}\Phi) \text{: ab initio SC ECP CASCF/AQCC} \]

Ab initio SC ECP CCSD(T), EOM-CCSD(T), MRCI, SI-SOCl

Yb^+ in Rb BEC: spin relaxation

Fully spin-polarized state can be created by immersing a single ion into BEC

Measurements:
- Charge transfer rate (trap “mass spectrometry”)
- Collision-induced spin relaxation (temperature and populations)

Ab initio SC ECP CCSD(T), EOM-CCSD(T), MRCI, SI-SOCl

Lanthanide dimers

Ab initio SC ECP CCSD(T) + energy differences, MRCI & AQCC

Yb_2 photoassociation in BEC

\[\Delta D_e = 40 \text{ cm}^{-1} \]

Eu_2 in magnetic trap

Heisenberg spin coupling:
\[J = \frac{7}{2}, S = 0 \Rightarrow 7 \]

\[\text{E}(S) = -(7/2)(S(S+1)-s(s+1)) \]

Zeeman relaxation rate, cm^-1/s:
Heisenberg \[8.6 \times 10^{-13} \]

Exptl. \[(2.5 \pm 1.5) \times 10^{-13} \]

Y. Salomonov, PASA 11, 022701 (2010)

Ion mobility: sensitivity to electronic configuration

Gd^+ (4f^75d^1, 10D), Eu^+ (4f^76s, 5S), Yb^+ (4f^146s, 5S), Lu^+ (4f^146s^2, 5S)

Ab initio SC ECP CCSD(T) + energy differences & SO MRCI

Interaction anisotropy is suppressed for submerged /shell

Yb^+ ion in Rb BEC: spin relaxation

Fully spin-polarized state can be created by immersing a single ion into BEC

Measurements:
- Charge transfer rate (trap “mass spectrometry”)
- Collision-induced spin relaxation (temperature and populations)

Ab initio SC ECP CCSD(T), EOM-CCSD(T), MRCI, SI-SOCl

Lanthanide dimers

Ab initio SC ECP CCSD(T) + energy differences, MRCI & AQCC

Yb_2 photoassociation in BEC

\[\Delta D_e = 40 \text{ cm}^{-1} \]

Eu_2 in magnetic trap

Heisenberg spin coupling:
\[J = \frac{7}{2}, S = 0 \Rightarrow 7 \]

\[\text{E}(S) = -(7/2)(S(S+1)-s(s+1)) \]

Zeeman relaxation rate, cm^-1/s:
Heisenberg \[8.6 \times 10^{-13} \]

Exptl. \[(2.5 \pm 1.5) \times 10^{-13} \]

Y. Salomonov, PASA 11, 022701 (2010)