Bayesian Inference for the LHD Experiment Data

Keisuke Fujii
Bayes rule

\[p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)} \]

Posterior
Full knowledge of \(\theta \)
Incl. mean and standard deviation
Bayes rule

Likelihood
How data (or noise) behaves.
e.g. Gaussian with mean θ

Posterior
Full knowledge of θ
Incl. mean and standard deviation

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$
Bayes rule

\[p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)} \]

Posterior
Full knowledge of \(\theta \)
Incl. mean and standard deviation

Likelihood
How data (or noise) behaves.
e.g. Gaussian with mean \(\theta \)

Prior
Our assumption on data.
Bayes rule

Posterior
Full knowledge of θ
Incl. mean and standard deviation

Likelihood
How data (or noise) behaves.
e.g. Gaussian with mean θ

Prior
Our assumption on data.

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)}$$

Probabilistic modeling
• Quantify what we assume.

Advantage
• Uncertainty quantification
• Assumption selection (model selection)
Outline

• Brief introduction

• Evaluation of fractional abundance data for W
 • Avoiding over and under fitting
 -model selection-

• Evaluation of systematic noise of
 LHD Thomson scattering system.

• Summary
Outline

• Brief introduction

• Evaluation of fractional abundance data for W
 • Avoiding over and under fitting
 -model selection-

• Evaluation of systematic noise of
 LHD Thomson scattering system.

• Summary
Fractional abundance of W is an important data essential to the tungsten transport diagnostics. Significant disagreement has been reported among the results by different groups, in particular $q < 30$.

\[d_{\text{model}} = \int_{\text{LOS}} \varepsilon_i(n_e, T_e)n_e \xi_q(T_e)n_W \,dx \]
Measurement

(a) T_e (keV) vs. r (m) at $t = 0.0$ s

(b) T_e (keV) vs. r (m) at $t = 4.22$ s, 6.32 s, 7.52 s

(c) n_e ($x10^{19}$ m$^{-3}$) vs. t (s) at $Z = 0.026$ m

(d) Intensity (arb. units) vs. z (m) at $t = 4.22$ s, 6.32 s, 7.52 s
Objective: Inference of ξ_q from the experimental data

Parameters:

- $\epsilon_i n_e$: Emission rate per 1 ground state ion.
- ξ_q: Fractional abundance
- n_w: Total tungsten density distribution

Assumptions:

- Independent of n_e and T_e
- Smooth function of T_e
- Smooth function of r and t

\[d_{\text{model}} = \int_{\text{LOS}} \epsilon_i(n_e, T_e)n_e\xi_q(T_e)n_w\,dx \]
How much we should assume

Parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon_i n_e$</td>
<td>Emission rate per 1 ground state ion.</td>
</tr>
<tr>
<td>ξ_q</td>
<td>Fractional abundance</td>
</tr>
<tr>
<td>n_w</td>
<td>Total tungsten density distribution</td>
</tr>
</tbody>
</table>

Assumptions

- Independent of n_e and T_e
- Smooth function of T_e
- Smooth function of r and t

How smooth profile we should assume?

- Too strong assumption.
- Too weak assumption.

Introduce hyperparameter

Parameters:
- ξ_q: Fractional abundance
- n_w: Total tungsten density distribution

Assumptions:
- Smooth function of T_e
- Smooth function of r and t

It is necessary to quantify the smoothness.

- Discretize the profile into finite number points
- Apply prior distribution for the difference $\Delta \xi$
- Parameterize the prior by hyperparameter

Prior (assumption)

$$p(\xi_q | \lambda_\xi) = \mathcal{N}(\Delta \xi_q | 0, \lambda_\xi)$$

How strong we assume.

$$p(\theta | d) = \frac{p(d | \theta)p(\theta)}{p(d)}$$
Choose how much we should assume from data

Prior (assumption)

\[p(\xi_q | \lambda \xi) = \mathcal{N}(\Delta \xi_q | 0, \lambda \xi) \]

How strong we assume.

Too strong assumption.

Too weak assumption.

\[p(\xi_q | \lambda \xi) = \mathcal{N}(\Delta \xi_q | 0, \lambda \xi) \]
Choose how much we should assume from data.

Too strong assumption.

How should we remove the dependence on λ_ξ?

Marginalization (apply prior for λ_ξ and integrate out)

$$p(\xi_q | d) \propto \int p(d | \xi_q) p(\xi_q | \lambda_\xi) p(\lambda_\xi) d\lambda_\xi$$

This avoids the under and over-fitting.
Our model well represents the measured data.

No under-fitting
Inferred ξ_q profiles are smooth enough.

No over-fitting

Our results are close to those by Putterich et al, but our peak positions locate at the smaller T_e side.

Our results may be used as benchmark for future theoretical works.
Outline

- Brief introduction

- Evaluation of fractional abundance data for W
 - Avoiding over and under fitting -model selection-

- Evaluation of systematic noise of LHD-TS diagnostic system.
 arXiv:1607.05380

- Summary
Systematic noise in LHD-TS system

Systematic noise: Has large correlation. Inaccurate calibration, model, ...

Can be analyzed by legacy statistic.

Bayesian statistics

![Graph showing original data with significant dependent noise due to mis-calibration.](image)
Objective:
Machine learning of the mis-calibration noise

(a) original data

(b) post calibration data

Systematic noise model

Current calibration factor for channel i

$$R_i = R_i^0 (1 + \Delta_i)$$

True calibration factor for channel i

Mis-calibration noise (to be estimated)
Probabilistic modeling

Experiment 1

Experiment 2

Experiment M

data
true values
systematic noise

\[y_1 = f_1 + n_1 + n_\Delta \]
\[y_2 = f_2 + n_2 + n_\Delta \]

\[y_M = f_M + n_M + n_\Delta \]
Gaussian Process for multiple frame data

\[
\begin{align*}
\mathbf{y}_1 &= \mathbf{f}_1 + \mathbf{n}_1 + \mathbf{n}_\Delta \\
\mathbf{y}_2 &= \mathbf{f}_2 + \mathbf{n}_2 + \mathbf{n}_\Delta \\
&\quad \quad \vdots \\
\mathbf{y}_M &= \mathbf{f}_M + \mathbf{n}_M + \mathbf{n}_\Delta \\
\end{align*}
\]

Prior:
\[
p(\mathbf{f}) = N(0,K_f)
\]

Prior:
\[
p(\mathbf{n}) = N(0,K_n)
\]
Gaussian Process for multiple frame data

\[
\begin{align*}
 y_1 &= f_1 + n_1 + n_\Delta \\
 y_2 &= f_2 + n_2 + n_\Delta \\
 &\vdots \\
 y_M &= f_M + n_M + n_\Delta
\end{align*}
\]

prior
\[
p(f) = N(0,K_f)
\]

prior
\[
p(n) = N(0,K_n)
\]

prior
\[
p(\Delta) = N(0,K_\Delta)
\]
\[R_i = R_i^0 (1 + \Delta_i) \]

Current calibration factor for channel \(i\)

True calibration factor for channel \(i\)

Mis-calibration noise (to be estimated)

210 frames of the new observation data by LHD Thomson system.
Application to the derivative inference.
Outline

• Brief introduction

• Evaluation of fractional abundance data for W
 • Avoiding over and under fitting
 -model selection-

• Evaluation of systematic noise of LHD-TS diagnostic system.

• Summary
We inferred

• the fractional abundance of W ions from LHD experimental data
• The systematic noise for the LHD-TS system by applying the Bayesian inference.
Bayesian statistics states “the importance of the assumption”.

The main challenge in Bayesian statistics is how we quantify our assumption.

There is no super-tool that is used for all the purposes. We A.M. data unit may need to develop our own statistical models to
- model the theoretical results
- update the data with experimental data
Our second attempt is to infer the systematic noise for LHD-TS system from a large amount of LHD experiment data. (data-driven science)

Revealed more detailed structure of n_e.
Details 1: Additive approximation

\[R_i = R_i^0 (1 + \Delta_i) \]

True calibration factor for channel \(i \)

Current calibration factor for channel \(i \)

Mis-calibration noise (to be estimated)

\[y = f + n + n_{\Delta} \]

Mis-calibration noise is not additive.

\[y_j = f_j + n_j + f_j \Delta \]

Additive approximation with iteration.
The distribution of Δ may not be Gaussian.

We adopt a Cauchy distribution for Δ.

Hierarchical model

\[
\begin{aligned}
\rho(\Delta_i) &= \mathcal{N}(0, \sigma_i^2) \\
\rho(\sigma_i^2) &= \mathcal{IG}\left(\frac{1}{2}, \frac{\sigma^2_{\Delta}}{2}\right)
\end{aligned}
\]
There are some outliers. The distribution of n may not be Gaussian.

We adopt a Cauchy distribution also for n.
Application to the derivative inference.

(a)

![Graph showing original data and post-calibrated data for n_e vs. $|r|$ (m)].

(b)

![Graph showing dn_e/dr vs. $|r|$ (m)].

(c)

![Graph showing d^2n_e/dr^2 vs. $|r|$ (m)].
Inference for the training data

\[
\frac{y_{i,j}}{1 + \Delta_i} = f_{i,j} + \frac{n_{Di,j} + n_{Pi,j}}{1 + \Delta_i}
\]
Inference for the test data

We made this post-calibration for test data that are NOT used for the Δ inference.

Detailed structures become apparent, suggesting no over-fitting.
Application to the derivative inference.
FIG. 5. (a) Two-dimensional image of the spectrum observed for the discharge #121534 at $t=4.22$ s as a function of the wavelength (horizontal axis), height z (vertical axis) and intensity (by false color). (b) The spectrum observed at $t=4.22$ s for the LOS with $z=0.026$ m. The central wavelengths for the highly charged tungsten ion emission lines are indicated in the figure.
FIG. A.1. n_e dependence of η_i values for 333.71-., 335.75-, 389.40- and 337.74-nm lines estimated by collisional-radiative model [30]. The calculations were made with the assumption of $T_e = 0.8$ keV for the $q = 26$ lines, while $T_e = 1.0$ keV is assumed for the $q = 27$ lines. η_i linearly increases in $n_e < 10^{17}$ m$^{-3}$, while it becomes saturated in $n_e > 10^{18}$ m$^{-3}$. The n_e range considered in this work ($n_e = 1 - 5 \times 10^{19}$ m$^{-3}$) are indicated by shadows. Note that this calculation does not contain the ion-collision effect.