Application of atomic data to quantitative analysis of tungsten spectra on EAST tokamak

L. Zhang1, S. Morita2,3, X. D. Yang1, Z. Xu1, P. F. Zhang1, J. Huang1, T. Ohishi2,3, W. Gao1, Y. J. Chen1, X. J. Liu1, Z. W. Wu1, J. L. Chen1, L. Q. Hu1 and EAST team1

1 Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230026, China
2 National Institute for Fusion Science, Toki 509-5292, Gifu, Japan
3 Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu, Japan

*E-mail: zhangling@ipp.ac.cn

Outline

• **Background of W spectroscopy in EAST**
 • Upgrade of PFCs on EAST
 • W spectroscopy in EAST

• **W spectra measurement**
 • Hardware development (EUV spectrometers)
 • Line analysis of W spectra at low/high T_e
 • Space-resolved measurement of W spectra at high T_e

• **Quantitative analysis of W spectra**
 • In-situ absolute intensity calibration
 • Methods for evaluation of W concentration
 • Required atomic data
 • W concentration in steady-state H-mode discharge

• **Summary & Future work**
Outline

• **Background of W spectroscopy in EAST**
 • Upgrade of PFCs on EAST
 • W spectroscopy in EAST

• **W spectra measurement**
 • Hardware development (EUV spectrometers)
 • Line analysis of W spectra at low/high \(T_e \)
 • Space-resolved measurement of W spectra at high \(T_e \)

• **Quantitative analysis of W spectra**
 • In-situ absolute intensity calibration
 • Methods for evaluation of W concentration
 • Required atomic data
 • W concentration in steady-state H-mode discharge

• **Summary & Future work**
Upgrade of Plasma Facing Components on EAST

FW: TZM (Titanium-Zirconium-Molybdenum) alloy
Upper divertor: ITER-like W/Cu monoblock
Lower divertor: SiC/C

Wall conditioning;
- Li coating, Si coating, B coating
- He-GDC, D₂-GDC

Gas puffing for diagnostics; Ar, He

Intrinsic & extrinsic impurities;
- He, Li, B, C, N, O, Si, Ar, Cr, Fe, Ni, Cu, Mo, W...
• ITER has adopted tungsten as the divertor material for the D-T operation.

• Impurity transport of tungsten in long pulse discharges is a crucial issue for both the EAST and ITER.
Outline

- Background of W spectroscopy in EAST
 - Upgrade of PFCs on EAST
 - W spectroscopy in EAST
- W spectra measurement
 - Hardware development (EUV spectrometers)
 - Line analysis of W spectra at low/high T_e
 - Space-resolved measurement of W spectra at high T_e
- Quantitative analysis of W spectra
 - In-situ absolute intensity calibration
 - Methods for evaluation of W concentration
 - Required atomic data
 - W concentration in steady-state H-mode discharge
- Summary & Future work
Hardware development: EUV spectrometers (1)
(Grazing incidence flat-field spectrometers)

• Two EUV spectrometers at longer wavelength range (20-500Å);
 EUV_Long: spectral measurement with fast response
 EUV_Long2: space-resolved measurement
 − Slit width: 30μm/100μm (EUV_Long/EUV_Long2 with spatial resolution slit)
 − Varied line spacing groove concave holographic grating: 1200g/mm
 − Back-illuminated CCD (size: 26.6x6.6mm², number of pixels: 1024x255)
 − EUV_Long: 1024 (horizontal) spectral measurement, 255 (vertical) full binning
 − EUV_Long2: 255 (horizontal) spectral measurement, 1024 (vertical) space-resolved measurement

• One EUV spectrometer at shorter wavelength range (10-130Å)
 EUV_Short: spectral measurement with fast response
 − Slit width: 30μm
 − Varied line spacing groove concave holographic grating: 2400g/mm
 − Back-illuminated CCD (size: 26.6x6.6mm², number of pixels:1024x255)
 − 1024 (horizontal) spectral measurement
 − 255 (vertical) full binning

• **Pulse motor** for wavelength scan
• **Laser light** for optical alignment
• **Turbo-molecular pump** for vacuum system
Hardware development: EUV spectrometers (2) (Grazing incidence flat-field spectrometers)

<table>
<thead>
<tr>
<th>Wavelength</th>
<th>Field of view</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUV_Long 20-500Å</td>
<td>Vertical 30cm, Toroidal 5cm</td>
<td>Time 5ms, Space -</td>
</tr>
<tr>
<td>EUV_Short 10-130Å</td>
<td>Vertical 50cm, Toroidal 4cm</td>
<td>Time 5ms, Space -</td>
</tr>
<tr>
<td>EUV_Long2 20-500Å</td>
<td>Vertical 50cm, Toroidal 7cm</td>
<td>Time ~50ms, Space 2-3cm</td>
</tr>
</tbody>
</table>
Line analysis of W spectra at low T_e

• W spectra can not be generally observed in L-mode plasmas at low heating power.

The following W spectra are recorded after sudden drop of tungsten dust from upper divertor.

• $T_e(0)=1.0$keV, $n_e=3.5 \times 10^{19}$m$^{-3}$: USN, L-mode, $P_{LHCD}=0.5$MW, $B_t=2.25$T, $I_p=500$kA, downward ∇B

- Tungsten UTA (unresolved transition array) at 15-70Å is observed by EUV_Short with high spectral resolution.
- UTA at 15-35Å can be compared with CoBIT data.

- 2^{nd} order tungsten lines at 90-120Å can be easily identified from UTA with high spectral resolution.
- Quantitative analysis of UTA is difficult.
Line analysis of W spectra at higher T_e

- W spectra are always observed with strong intensity in USN H-mode discharges. Additional 4.6GHz LHW and ECRH heating increase the T_e higher than 2.5keV. Then, highly ionized W ions of W^{40+} to W^{45+} can be easily measured with strong intensity. The following W spectra are recorded during ELM-free H-mode phase.

- $T_e(0)=2.6$keV, $n_e=3.7 \times 10^{19}$m$^{-3}$: USN, $P_{LHW}/P_{ICRH}/P_{ECRH}=2.1/1.4/0.4$MW, $B_t=2.25$T, $I_p=450$kA, downward ∇B

- W^{40+} - W^{45+} lines with strong intensity are identified from the UTA.
- Weak isolated W^{42+} - W^{45+} lines at longer wavelength range are also measured

\[W^{43+} (E_i=2.210$keV) 4s^24p \quad 4p-4s (61.334, 126.299Å) \]
\[W^{44+} (E_i=2.354$keV) 4s^2 \quad 4p-4s (60.93, 132.888Å) \]
\[W^{45+} (E_i=2.414$keV) 4s \quad 4p-4s (62.336, 126.998Å) \]
Space-resolved measurement of W spectra at high T_e

USN, $P_{LHW2}/P_{ICRH}/P_{ECRH}=2.2/0.6/0.3$ MW, steady-state ELMy H-mode

- The position of peak intensity for different transition from the W ion with the same ionization stage is a little different, e.g. for W^{43+}, W^{45+}
- The profiles will be used to check the PEC data
- With absolute intensity calibration and Abel inversion, the tungsten density profile could be calculated

Typical T_e and n_e profile
Outline

• Background of W spectroscopy in EAST
 • Upgrade of PFCs on EAST
 • W spectroscopy in EAST

• W spectra measurement
 • Hardware development (EUV spectrometers)
 • Line analysis of W spectra at low/high T_e
 • Space-resolved measurement of W spectra at high T_e

• Quantitative analysis of W spectra
 • In-situ absolute intensity calibration
 • Methods for evaluation of W concentration
 • Required atomic data
 • W concentration in steady-state H-mode discharge

• Summary & Future work
In-situ absolute intensity calibration for EUV_Long

- Absolute intensity calibration of the EUV spectrometer is necessary for the quantitative analysis of line emissions and bremsstrahlung continuum.
- Absolute intensity calibration at 20-150Å: comparison of bremsstrahlung continua in EUV and visible ranges.
- Relative intensity calibration at 130-300Å: line pairs of 2p-2s/3p-3s transitions of Li and Na-like ions from EAST.

\[I_{\text{brem}} = \frac{9.5 \times 10^{-20} \Delta \lambda}{4\pi \lambda} \int \frac{g_{\text{eff}} n_e^2 Z_{\text{eff}}}{T_e^{3/2} \exp(12400/T_e \lambda)} \, \text{dl} \, \text{(photons s}^{-1} \text{m}^{-2} \text{Sr}^{-1})} \]

\[\varepsilon_{\text{brem}_{\text{EUV}}} = \varepsilon_{\text{brem}_{\text{vis}}} \left(\frac{\lambda_{\text{vis}}}{\lambda_{\text{EUV}}} \right)^2 \frac{g_{\text{eff}} \text{EUV}}{g_{\text{eff}} \text{vis}} \times \exp \left[-\frac{12400}{T_e} \left(\frac{1}{\lambda_{\text{EUV}}} - \frac{1}{\lambda_{\text{vis}}} \right) \right] \]

Candidate line pairs in EAST plasma:

<table>
<thead>
<tr>
<th>Ion</th>
<th>Ei (eV)</th>
<th>(\lambda) [Å]</th>
<th>Transition</th>
<th>Intensity ratio</th>
<th>Sensitivity ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe XXIV</td>
<td>2046</td>
<td>192.03</td>
<td>1s(^2)2s(^1)S({12})-1s(^2)2p(^1)P({32})</td>
<td>1.91</td>
<td>4.38±0.11</td>
</tr>
<tr>
<td>Mo XXXII</td>
<td>1776</td>
<td>127.87</td>
<td>2p(^3)3s(^2)2p(^3)P(_{32})</td>
<td>1.82</td>
<td>5.02±0.13</td>
</tr>
<tr>
<td>Cr XXII</td>
<td>1722</td>
<td>223.02</td>
<td>1s(^2)2s(^1)S({12})-1s(^2)2p(^3)P({32})</td>
<td>1.93</td>
<td>3.39±0.11</td>
</tr>
<tr>
<td>Ar XVI</td>
<td>918</td>
<td>353.85</td>
<td>1s(^2)2s(^1)S({12})-1s(^2)2p(^3)P({32})</td>
<td>1.97</td>
<td>2.21±0.07</td>
</tr>
<tr>
<td>Fe XVI</td>
<td>489</td>
<td>335.41</td>
<td>2p(^3)3s(^2)2p(^3)P(_{32})</td>
<td>1.95</td>
<td>1.66±0.10</td>
</tr>
</tbody>
</table>

*Ref. “K D Lawson et al 2009 JINST 4 P04013”

EUV spectra have to be checked before the calibration whether the metallic impurity is negligible or not because of its large recombination rate.

There is a wavelength gap between Cr XXII and Ar XVI.
Method for evaluation of W concentration (1): using chord-integrated tungsten line intensity

- W concentration, \(c_W = \frac{N_W}{N_e} \) or \(c_W = \frac{n_W}{n_e} \)

- Evaluation of \(c_W \) from chord-integrated line intensity, e.g. \(I_{W^{44+}}^{44} - I_{W^{45+}}^{45} \)

\[
I_{W^{q+}}^{q+} = \int n_{W^{q+}}(l) PEC_{W^{q+}}^{W^{q+}}(l) n_e(l) \, dl
\]

\[
= \int c_W(l) n_e(l) FA_{W^{q+}}^{W^{q+}}(l) \cdot PEC_{W^{q+}}^{W^{q+}}(l) n_e(l) \, dl
\]

\[
= \int c_W f_{c_W}(l) n_e(l) FA_{W^{q+}}^{W^{q+}}(l) \cdot PEC_{W^{q+}}^{W^{q+}}(l) n_e(l) \, dl
\]

\[
c_W = \frac{I_{W^{q+}}^{q+}}{\int f_{c_W}(l) FA_{W^{q+}}^{W^{q+}}(l) PEC_{W^{q+}}^{W^{q+}}(l) n_e^2(l) \, dl}
\]

\(I_{W^{q+}}^{q+} \): measured chord-integrated line intensity from \(W^{q+} \)

\(n_{W^{q+}} \): density of \(W^{q+} \)

\(PEC_{W^{q+}}^{W^{q+}} \): photon emissivity coefficient of line from \(W^{q+} \)

\(n_e \): electron density

\(c_W(r) \): density profile of \(W \), \(c_W(r) = c_W \cdot f_{c_W}(r) \)

\(f_{c_W} \): normalized density profile of \(W \)

\(FA_{W^{q+}}^{W^{q+}} \): fractional abundance of \(W^{q+} \) under ionization equilibrium

Method for evaluation of W concentration (2): using radiation power loss

- The c_w is analyzed for a target shot.
- Calibration shot with similar T_e profile to the target shot is required; a sudden increase in the radiation power loss caused by c_w increase.
- Radiation power loss is measured by bolometer system.

- Cooling rate (Radiation power coefficient):
 \[L_W(T_e, n_e) = \sum_q L^{q+}_W(T_e, n_e) N_{Wq+} / N_W \]

- Radiation power loss by W:
 \[P_W = \int L_W(T_e, n_e) n_e(r) n_W(r) \, dV \]

- For calibration shot:
 \[L_W^{\text{cali}} = \Delta P_{\text{rad}} / (\Delta I_{W-\text{UTA}}^{\text{cali}} / n_e) \]

- For target shot:
 \[P_W = L_W^{\text{cali}} \cdot (I_{W-\text{UTA}} / n_e) = \int L_W(T_e, n_e) n_e(r) n_W(r) \, dV \]
 \[= \int L_W(T_e, n_e) n_e^2(r) c_W f_{cW}(r) \, dV \]
 \[c_W = L_W^{\text{cali}} \cdot (I_{W-\text{UTA}} / n_e) / \int L_W(T_e, n_e) n_e^2(r) f_{cW}(r) \, dV \]

$c_W(r)$: density profile of W, $f_{cW}(r)$: normalized density profile of W

$I_{W-\text{UTA}}$: chord-integrated intensity of W-UTA at 45-70Å
Method for evaluation of W concentration (3): using space-resolved tungsten line intensity

• Density profile of W ions $n_{wq}(r)$, e.g. for $W^{42+}-W^{45+}$, can be obtained from the space-resolved measurement of impurity line intensity.

• Chord-integrated line intensity, e.g. $I_{wq}^{42+} - I_{wq}^{45+}$

\[
I_{wq}^{q+} = \int \varepsilon_{wq}^{q+} dl = \int n_{wq}(l) PEC_{wq}^{q+}(l)n_e(l)dl
\]

• Multi-channel I_{wq}^{q+} (e.g. 64 channels for EUV_Long2)

I_{wq}^{q+}: measured chord-integrated line intensity from W^{q+}

ε_{wq}^{q+}: emissivity of line from W^{q+}

n_{wq}^{q+}: density of W^{q+}

PEC_{wq}^{q+}: photon emissivity coefficient of line from W^{q+}
Atomic data (1):
PEC (photon emissivity coef.) of W lines

- ADAS-IC: with J-resolved fine structure energy levels (arf40_ic series)
- ADAS-LS: with J-unresolved LS levels (arf40_ls series)

![Graphs showing PEC for different W ionization stages and emission lines](image-url)
Data from open-ADAS are used in the set of rate equations.

- Effective ionization coefficient (scd50_w.dat)
- Effective recombination coefficient (acd50_w.dat)

Effect of impurity transport should be considered.
Atomic data (3): Tungsten cooling rate

- D Post et al., At. Data Nucl. Data Tables 20(1977) 397
- Open-ADAS
- T Pütterich et al., Nucl. Fusion 50(2010) 025021

LHD experiment & CR model (line emission)

Original ADPAK model: average ion model

Sasaki and Murakami model

Pütterich calculation

Estimation from bolometer measurement
W concentration in steady-state ELMy H-mode

- The evaluated C\textsubscript{w} from W42+ is one order of magnitude higher than that from other lines.

- The evaluated C\textsubscript{w} is in the range of 5x10-6-3x10-5.

Table: Concentration Comparison

<table>
<thead>
<tr>
<th>Method</th>
<th>n\textsubscript{W}(0)/n\textsubscript{e}(0)</th>
<th>N\textsubscript{W}/N\textsubscript{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEC</td>
<td>W42+ 129.41Å</td>
<td>1.1x10-3</td>
</tr>
<tr>
<td></td>
<td>W43+ 61.334Å</td>
<td>4.5x10-5</td>
</tr>
<tr>
<td></td>
<td>W43+ 126.29Å</td>
<td>6.3x10-5</td>
</tr>
<tr>
<td></td>
<td>W44+ 60.93Å</td>
<td>1.6x10-5</td>
</tr>
<tr>
<td></td>
<td>W45+ 62.336Å</td>
<td>1.9x10-5</td>
</tr>
<tr>
<td></td>
<td>W45+ 126.998Å</td>
<td>2.4x10-5</td>
</tr>
<tr>
<td>Cooling rate</td>
<td>AIM</td>
<td>4.3x10-5</td>
</tr>
<tr>
<td></td>
<td>Pütterich</td>
<td>5.3x10-5</td>
</tr>
<tr>
<td></td>
<td>ADAS</td>
<td>9.1x10-5</td>
</tr>
</tbody>
</table>
Summary

• Tungsten spectra have been measured in EAST discharges using newly installed EUV spectrometers. Line analysis of tungsten spectra has been done.

• Two Methods for evaluation of tungsten concentration based on the cooling rate of tungsten ions and the PEC of W^{42+} - W^{45+} ions are introduced with the required atomic data.

• The Cw in steady-state H-mode discharge with RF heating is evaluated to be in a range of 5×10^{-6} - 3×10^{-5} with different methods, while the evaluated Cw from W^{42+} is one order of magnitude larger than that from other lines.

• Vertical profiles of chord-integrated tungsten line intensity have been measured in steady-state H-mode discharges. Further analysis is being now progressed.

Future work

• To measure and identify the emission lines of W ions in longer wavelength range.

• To make closer collaboration on the tungsten study with atomic physicists.

• To study the tungsten transport with combination of quantitative measurement and simulation.
THANK YOU FOR YOUR ATTENTION